Bevacizumab or fibronectin gene editing inhibits the osteoclastogenic effects of fibroblasts derived from human radicular cysts

Authors: Hai-cheng Wang1, Peng Wang2, Yuan-wei Chen3, Yan Zhang1
1 Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
2 State Key Laboratory of Oral Diseases, Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
3 Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regneration, Shanghai 200072, China
Correspondence to: Yan Zhang:,
DOI: 10.1038/s41401-018-0172-x
Received: 28 May 2018
Accepted: 14 September 2018
Advance online: 31 October 2018


Fibronectin (FN) is a main component of extracellular matrix (ECM) in most adult tissues. Under pathological conditions, particularly inflammation, wound healing and tumors, an alternatively spliced exon extra domain A (EDA) is included in the FN protein (EDA+FN), which facilitates cellular proliferation, motility, and aggressiveness in different lesions. In this study we investigated the effects of EDA+FN on bone destruction in human radicular cysts and explored the possibility of editing FN gene or blocking the related paracrine signaling pathway to inhibit the osteoclastogenesis. The specimens of radicular cysts were obtained from 20 patients. We showed that the vessel density was positively associated with both the lesion size (R = 0.49, P = 0.001) and EDA+FN staining (R = 0.26, P = 0.022) in the specimens. We isolated fibroblasts from surgical specimens, and used the CRISPR/Cas system to knockout the EDA exon, or used IST-9 antibody and bevacizumab to block EDA+FN and VEGF, respectively. Compared to control fibroblasts, the fibroblasts from radicular cysts exhibited significantly more Trap+MNCs, the relative expression level of VEGF was positively associated with both the ratio of EDA+FN/total FN (R = 0.271, P = 0.019) and with the number of Trap+MNCs (R = 0.331, P = 0.008). The knockout of the EDA exon significantly decreased VEGF expression in the fibroblasts derived from radicular cysts, leading to significantly decreased osteoclastogenesis; similar results were observed using bevacizumab to block VEGF, but block of EDA+FN with IST-9 antibody had no effect. Furthermore, the inhibitory effects of gene editing on Trap+MNC development were restored by exogenous VEGF. These results suggest that EDA+FN facilitates osteoclastogenesis in the fibrous capsule of radicular cysts, through a mechanism mediated by VEGF via an autocrine effect on the fibroblasts. Bevacizumab inhibits osteoclastogenesis in radicular cysts as effectively as the exclusion of the EDA exon by gene editing.
Keywords: odontogenic cysts; radicular cysts; osteoclastogenesis; EDA+FN; VEGF; gene editing; bevacizumab; IST-9 antibody

Article Options

Download Citation

Cited times in Scopus