Original Article

Down-regulation of C-type natriuretic peptide receptor by vasonatrin peptide in cardiac myocytes and fibroblasts

SHUN-yan LÜ, Miao-zhang ZHU, Dian-shi WANG, Jun YU, Hai-tao GUO, Yu-zhen HU, Qi-ming WEI

Abstract

AIM:
To investigate the regulatory effects of vasonatrin peptide (VNP) on the expression of C-type natriuretic peptide receptor (NPR-C) in cultured neonatal rat cardiac myocytes and fibroblasts.
METHODS:
Quantitative RT-PCR was undertaken to evaluate the levels of NPR-C mRNA and radioimmunoassay was used to determine the formation of intracellular cGMP.
RESULTS:
Twenty-four hours hypoxic exposure increased the level of NPR-C mRNA in cardiomyocytes, while did not alter the expression of NPR-C in cardiac fibroblasts. VNP (10(-8)-10(-6) mol/L) reduced the levels of NPR-C mRNA in cardiac myocytes induced by hypoxia in a concentration-dependent manner, and with high concentration (10(-6) mol/L) also decreased the expression of NPR-C in cardiac fibroblasts and air-control cardiac myocytes. The inhibitory effects of VNP on the expression of NPR-C was mimicked by 8-bromo-cGMP 10(-6) mol/L (a membrane permeable analog of cGMP). VNP (10(-8)-10(-6) mol/L) increased the formation of intracellular guanosine-3',5'-cyclic monophosphate (cGMP) in both cardiac myocytes and fibroblasts. HS-142-1, the particulate guanylyl cyclase-coupled receptor antagonist, partially abrogated the above effects of VNP.
CONCLUSION:
Hypoxic exposure for 24 h up-regulated the expression of NPR-C in cultured neonatal rat cardiac myocytes. VNP decreased the expression of NPR-C in cardiac myocytes and fibroblasts under both air-control and hypoxic condition, which was at least partially mediated by guanylate cyclase linked natriuretic peptide receptors through increasing the intracellular cGMP.
Keywords:

Article Options

Download Citation

Cited times in Scopus