Original Article

Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro

Fang Zhou, Hong Zhou, Ting Wang, Yuan Mu, Biao Wu, Dong-lin Guo, Xian-mei Zhang, Ying Wu
DOI: 10.1038/aps.2011.139

Abstract

Aim: Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells.
Methods: Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP, 100 μmol/L) or factor VIIa (10 nmol/L), and analyzed using MTT and Transwell assays, respectively. The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope. The expression of caspase-7, tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR, ELISA and Western blot assays. The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways was analyzed with Western blot.
Results: Both PAR2-AP and factor VIIa promoted SW620 cell proliferation and migration, and caused cytoskeleton reorganization (increased filopodia and pseudopodia). Pretreatment with EGCG (25, 50, 75, and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor VIIa. Furthermore, it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor VIIa.
Conclusion: EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor VIIa via inhibition of the ERK1/2 and NF-κB pathways. The compound may serve as a preventive and therapeutic agent for colon cancers.
Keywords:

Article Options

Download Citation

Cited times in Scopus