Original Article

Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

Sunny Yang Xiang, Linda L Ye, Li-lu Marie Duan, Li-hui Liu, Zhi-dong Ge, John A Auchampach, Garrett J Gross, Dayue Darrel Duan
DOI: 10.1038/aps.2011.61

Abstract

Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postconditioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.
Methods: CFTR knockout (CFTR−/−) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used. In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.
Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4% ±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4% ±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR−/−) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivoand ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTR gene abolished the protective effects of IPC against I/R-induced apoptosis.
Conclusion: These results provide compelling evidence for a critical role for CFTR Cl channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.
Keywords:

Article Options

Download Citation

Cited times in Scopus