Review

etween oxidatCross-talk bive stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease

Zhi-zhong Guan

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its pathogenesis is likely to be associated with multiple etiologies and mechanisms in which oxidative stress and deficits of neurotransmitter receptors may play important roles. It has been indicated that a high level of free radicals can influence the expressions of nicotinic receptors (nAChRs), muscarinic receptors (mAChRs), and N-methyl-D-aspartate (NMDA) receptors, exhibiting disturbances of cellular membrane by lipid peroxidation, damages of the protein receptors by protein oxidation, and possible modified gene expressions of these receptors by DNA oxidation. nAChRs have shown an antioxidative effect by a direct or an indirect pathway; mAChR stimulation may generate reactive oxygen species, which might be a physiological compensative reaction, or improve oxidative stress; and high stimulation to NMDA receptors can increase the sensitivity of oxidative stress of neurons. This review may provide complemental information for understanding the correlation between oxidative stress and changed cholinergic and glutaminergic receptors in AD processing, and for revealing the underlying molecular mechanisms of these factors in the multiple etiologies and pathophysiology of the disorder.
Keywords: