Article

Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD+-SIRT3 pathway

Yu-ting Liu1,2, Hong-liang Qiu1,2, Hong-xia Xia1,2, Yi-zhou Feng1,2, Jiang-yang Deng1,2, Yuan Yuan1,2, Da Ke1,2, Heng Zhou1,2, Yan Che1,2, Qi-zhu Tang1,2
1 Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
2 Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
Correspondence to: Yan Che: cheyan@whu.edu.cn, Qi-zhu Tang: qztang@whu.edu.cn,
DOI: 10.1038/s41401-024-01247-2
Received: 30 November 2023
Accepted: 19 February 2024
Advance online: 8 March 2024

Abstract

Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM.

Keywords: diabetic cardiomyopathy; Macrod1; PARP1; NAD ; SIRT3; oxidative stress

Article Options

Download Citation

Cited times in Scopus