mTORC1 inhibitor RAD001 (everolimus) enhances non-small cell lung cancer cell radiosensitivity in vitro via suppressing epithelial–mesenchymal transition

Yu Chen1, Wen-wen LI1, Ping Peng1, Wei-heng Zhao1, Yi-jun Tian1, Yu Huang1, Shu Xia1, Yuan Chen1
1 Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Correspondence to: Shu Xia:, Yuan Chen:,
DOI: 10.1038/s41401-019-0215-y
Received: 15 June 2018
Accepted: 16 January 2019
Advance online: 22 February 2019


Resistance to radiotherapy causes non-small cell lung cancer (NSCLC) treatment failure associated with local recurrence and metastasis. Thus, understanding the radiosensitization of NSCLC cells is crucial for developing new treatments and improving prognostics. mTORC1 has been shown to regulate tumor cell radiosensitivity, but the underlying mechanisms are unclear. Moreover, mTORC1 also regulates epithelial–mesenchymal transition (EMT) that is important to metastasis and recurrence. In this study we explored whether mTORC1 regulated NSCLC cell radiosensitivity by altering EMT. We performed immunohistichemical analysis using tumor, adjacent and normal tissues from 50 NSCLC patients, which confirmed significantly elevated mTOR protein expression in NSCLC tissue. Then we used NCI-H460 and NCI-H661 cell lines to examine the effects of the mTORC1 inhibitor RAD001 (everolimus) on in vitro radiosensitivity, protein expression and dose-survival curves. RAD001 (10 nmol/L) significantly inhibited the mTORC1 pathway in both the cell lines. Pretreatment with RAD001 (0.1 nmol/L) enhanced the radiosensitivity in NCI-H661 cells with wild-type PIK3CA and KRAS but not in NCI-H460 cells with mutant PIK3CA and KRAS; the sensitivity enhancement ratios in the two NSCLC cell lines were 1.40 and 1.03, respectively. Furthermore, pretreatment with RAD001 (0.1 nmol/L) significantly decreased the migration and invasion with altered expression of several EMT-associated proteins (significantly increased E-cadherin and decreased vimentin expression) in irradiated NCI-H661 cells. Publicly available expression data confirmed that irradiation affected mTOR and EMT-associated genes at the transcript level in NSCLC cells. These results suggest that mTORC1 inhibition enhances the in vitro radiosensitivity of NSCLC cells with wild-type PIK3CA and KRAS by affecting EMT. Our preclinical data may provide a potential new strategy for NSCLC treatment.
Keywords: Non-small-cell lung cancer (NSCLC); NCI-H460 cell line; NCI-H661 cell line; Radiosensitivity; mTOR; RAD001 (everolimus); PIK3CA; KRAS; Epithelial–mesenchymal transition

Article Options

Download Citation

Cited times in Scopus