Original Article

Molecular simulation of a single-chain antibody against AChE to explore molecular basis of inhibitory effect of 3F3 McAb on enzyme activity.

Authors: Chong-Zhi Guo, Jun-Hua Wu, Yu-Xia Wang, Yuan-Dong Hu, Song Li, Man-Ji Sun


AIM: To explore the molecular basis of the inhibitory effect of 3F3, a monoclonal antibody against acetylcholinesterase (AChE), by computer-aided molecular simulation. METHODS: The single-chain 3F3 antibody (Sc3F3) was designed by joining VH and VL via a flexible linker (Gly4Ser)3. The amino acid sequence of the recombinant Sc3F3 was then subjected to computer-aided molecular modeling, and docking with the antigen molecule AChE to mimic the immunoactive interaction in a three-dimensional fashion. RESULTS: The modeled structure of Sc3F3 manifested the common features of a classical antibody. Both VH and VL were composed of two ?-sheets and connecting loops. The docking profile of the action between Sc3F3 with AChE demonstrated the formation of a stable structure. The van der Waals force played an important role suggesting that the complex was formed mainly via hydrophobic interactions between Sc3F3 and AChE molecules. CONCLUSION: The spatial structure of the complex of Sc3F3 and AChE showed that Sc3F3 overlaid the entrance of the active center gorge of AChE blocking the access of substrate.

Article Options

Download Citation

Cited times in Scopus