How to cite item

SARS-CoV-2 receptor binding domain radio-probe: a non-invasive approach for angiotensin-converting enzyme 2 mapping in mice

  
@article{APS10609,
	author = {Dan Li and Jin Ding and Te-li Liu and Feng Wang and Xiang-xi Meng and Song Liu and Zhi Yang and Hua Zhu},
	title = {SARS-CoV-2 receptor binding domain radio-probe: a non-invasive approach for angiotensin-converting enzyme 2 mapping in mice},
	journal = {Acta Pharmacologica Sinica},
	volume = {43},
	number = {7},
	year = {2022},
	keywords = {},
	abstract = {The spike protein of SARS-CoV-2 interacts with angiotensin-converting enzyme 2 (ACE2) of human respiratory epithelial cells, which leads to infection. Furthermore, low-dose radiation has been found to reduce inflammation and aid the curing of COVID-19. The receptor binding domain (RBD), a recombinant spike protein with a His tag at the C-terminus, binds to ACE2 in human body. We thus constructed a radioiodinated RBD as a molecule-targeted probe to non-invasively explore ACE2 expression in vivo, and to investigate radiotherapy pathway for inhibiting ACE2. RBD was labeled with [124I]NaI using an N-bromosuccinimide (NBS)-mediated method, and 124I-RBD was obtained after purification with a specific activity of 28.9 GBq/nmol. Its radiochemical purity was (RCP) over 90% in saline for 5 days. The dissociation constant of 124I-RBD binding to hACE2 was 75.7 nM. The uptake of 124I-RBD by HeLaACE+ cells at 2 h was 2.96% ± 0.35%, which could be substantially blocked by an excessive amount of RBD, and drop to 1.71% ± 0.23%. In BALB/c mice, the biodistribution of 124I-RBD after intravenous injection showed a moderate metabolism rate, and its 24 h-post injection (p.i.) organ distribution was similar to the expression profile in body. Micro-PET imaging of mice after intrapulmonary injection showed high uptake of lung at 1, 4, 24 h p.i.. In conclusion, the experimental results demonstrate the potential of 124I-RBD as a novel targeted molecular probe for COVID-19. This probe may be used for non-invasive ACE2 mapping in mammals.},
	issn = {1745-7254},	url = {http://www.chinaphar.com/article/view/10609}
}