How to cite item

Osimertinib successfully combats EGFR-negative glioblastoma cells by inhibiting the MAPK pathway

	author = {Cheng Chen and Chuan-dong Cheng and Hong Wu and Zuo-wei Wang and Li Wang and Zong-ru Jiang and Ao-li Wang and Chen Hu and Yong-fei Dong and Wan-xiang Niu and Shuang Qi and Zi-ping Qi and Jing Liu and Wen-chao Wang and Chao-shi Niu and Qing-song Liu},
	title = {Osimertinib successfully combats EGFR-negative glioblastoma cells by inhibiting the MAPK pathway},
	journal = {Acta Pharmacologica Sinica},
	volume = {42},
	number = {1},
	year = {2021},
	keywords = {},
	abstract = {Glioblastoma (GBM) patients have extremely poor prognoses, and currently no effective treatment available including surgery, radiation, and chemotherapy. MAPK-interacting kinases (MNK1/2) as the downstream of the MAPK-signaling pathway regulate protein synthesis in normal and tumor cells. Research has shown that targeting MNKs may be an effective strategy to treat GBM. In this study we investigated the antitumor activity of osimertinib, an FDA-approved epidermal growth factor receptor (EGFR) inhibitor, against patient-derived primary GBM cells. Using high-throughput screening approach, we screened the entire panel of FDA-approved drugs against primary cancer cells derived from glioblastoma patients, found that osimertinib (3 μM) suppressed the proliferation of a subset (10/22) of EGFR-negative GBM cells (>50% growth inhibition). We detected the gene expression difference between osimertinib-sensitive and -resistant cells, found that osimertinib-sensitive GBM cells displayed activated MAPK-signaling pathway. We further showed that osimertinib potently inhibited the MNK kinase activities with IC50 values of 324 nM and 48.6 nM, respectively, against MNK1 and MNK2 kinases; osimertinib (0.3–3 μM) dose-dependently suppressed the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). In GBM patient-derived xenografts mice, oral administration of osimertinib (40 mg· kg−1 ·d−1, for 18 days) significantly suppressed the tumor growth (TGI = 74.5%) and inhibited eIF4E phosphorylation in tumor cells. Given the fact that osimertinib could cross the blood–brain barrier and its toxicity was well tolerated in patients, our results suggest that osimertinib could be a new and effective drug candidate for the EGFR-negative GBM patients.},
	issn = {1745-7254},	url = {}