How to cite item

Metabolism and disposition of pyrotinib in healthy male volunteers: covalent binding with human plasma protein

  
@article{APS10000,
	author = {Jian Meng and Xiao-yun Liu and Sheng Ma and Hua Zhang and Song-da Yu and Yi-fan Zhang and Mei-xia Chen and Xiao-yu Zhu and Yi Liu and Ling Yi and Xiao-liang Ding and Xiao-yan Chen and Li-yan Miao and Da-fang Zhong},
	title = {Metabolism and disposition of pyrotinib in healthy male volunteers: covalent binding with human plasma protein},
	journal = {Acta Pharmacologica Sinica},
	volume = {40},
	number = {7},
	year = {2019},
	keywords = {},
	abstract = {Pyrotinib is a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor that is used to treat HER2-positive breast cancer. In this study we investigated the metabolism and disposition of pyrotinib in six healthy Chinese men after a single oral dose of 402 mg of [14C]pyrotinib. At 240 h postdose, the mean cumulative excretion of the dose radioactivity was 92.6%, including 1.7% in urine and 90.9% in feces. In feces, oxidative metabolites were detected as major drug-related materials and the primary metabolic pathways were O-depicoline (M1), oxidation of pyrrolidine (M5), and oxidation of pyridine (M6-1, M6-2, M6-3, and M6-4). In plasma, the major circulating entities identified were pyrotinib, SHR150980 (M1), SHR151468 (M2), and SHR151136 (M5), accounting for 10.9%, 1.9%, 1.0%, and 3.0%, respectively, of the total plasma radioactivity based on the AUC0–∞ ratios. Approximately 58.3% of the total plasma radioactivity AUC0–∞ was attributed to covalently bound materials. After incubation of human plasma with [14C]pyrotinib at 37 °C for 2, 5, 8, and 24 h, the recovery of radioactivity by extraction was 97.4%, 91.8%, 69.6%, and 46.7%, respectively, revealing covalent binding occurred independently of enzymes. A group of pyrotinib adducts, including pyrotinib-lysine and pyrotinib adducts of the peptides Gly-Lys, Lys-Ala, Gly-Lys-Ala, and Lys-Ala-Ser, was identified after HCl hydrolysis of the incubated plasma. Therefore, the amino acid residue Lys190 of human serum albumin was proposed to covalently bind to pyrotinib via Michael addition. Finally, the covalently bound pyrotinib could dissociate from the human plasma protein and be metabolized by oxidation and excreted via feces.},
	url = {http://www.chinaphar.com/article/view/10000}
}