Influence of ramipril on release of norepinephrine during sympathetic nerve stimulation in isolated rabbit hearts

XIAO Ji-Zhou
(Deptartment of Pharmacology, Tongji Medical University, Hankou 430030, China)

Bernward A SCHOLKENS
(Deptartment of Pharmacology, Hoechst AG, 6210 Frankfurt am Main 80, FR Germany)

ABSTRACT The present study was performed to determine norepinephrine (NE) release during sympathetic nerve stimulation (SNS) and the inhibitory action of ramipril on the release of NE induced by the stimulus in isolated perfused rabbit hearts. SNS resulted in increases of NE ranging from 2.4 ± 0.9 ng/ml to 10.2 ± 2.7 ng/ml. The addition of ramipril 70 µg/min to the perfusate for 30 min significantly reduced NE release (p<0.001). The results suggest that ramipril as an inhibitor of angiotensin converting enzyme (ACEI) may be involved in the angiotensin II-mediated facilitation of adrenergic neurotransmission.

KEY WORDS ramipril; norepinephrine; sympathetic nervous system; kininase II; isolated heart

Angiotensin converting enzyme inhibitors (ACEI) have been introduced clinically as antihypertensive drugs. However, the antihypertensive mechanism of ACEI cannot be solely explained by an inhibition of the plasma renin-angiotensin system (RAS) with reduced vasconstrictor action of the circulating angiotensin II. Inhibition of kininase II with an increase of endogenous bradykinin did not appear to play the major role. Bupindil (Hoe 498) is an active ACEI(1). It has potent antihypertensive effects on many animal hypertension models including SHR(2). Our previous study have been reported that ACEI attenuated the effects of sympathetic nerve stimulation (SNS) on the heart(3). In this study, the question whether the antihypertensive effects of ACEI is related to the influence of the release of sympathetic neurotransmitter (NE) was investigated. We anticipate that the interference of ACEI on NE release may play an important role in their antihypertensive effect.

MATERIALS AND METHODS

New Zealand rabbits of either sex
weighing 2.5 ± SD 0.5 kg were killed by a blow on the head and exsanguination from the carotid artery. The hearts with right sympathetic nerve were isolated and prepared according to the modified method of Langendorff (11). The perfusion pressure of Krebs-Henseleit solution (11) was maintained at 7.36 kPa (75 cm H2O, 37 ± 2°C). A period of 20–30 min was allowed for maintaining the equilibrium of the perfused heart. The preparations were subject to a constant resting tension of 5 g. Force of contraction (FC), coronary flow (CF) and heart rate (HR) were recorded as described previously (11).

The cardiac sympathetic nerves were stimulated twice for 1 min each, by using Stimulator II (H Sachs). For each stimulation period, the right cardiac nerves were stimulated by rectangular impulses of 1-ms duration, 10 Hz and 35 mA. The interval between 2 stimulations was 30 min. To determine the output of NE, 4 samples were collected (each 15 s) of the venous effluent at 15, 30, 45 and 60 s after the electrical stimulation. NE was determined by a fluorometric method (12). Freshly dissolved ramipril in Krebs-Henseleit solution was infused into the aorta cannula from 1 min after S1 (10 μg/min) until the end of S2.

RESULTS

Effects of SNS on HR, FC, CF and NE release were summarized in Tab. 1, and one typical experiment was illustrated as Fig 1. SNS of isolated rabbit hearts caused the rise in HR and FC. CF was initially decreased, but increased above the control levels after 30 s. SNS resulted in an increase of NE ranging from 2.8 ± 0.9 ng/ml (at 10 s during S1) to 19.2 ± 2.7 ng/ml (at 45 s during S2). n = 5. After ramipril 10 μg (ml-min) was added to the perfusate for 30 min, the amount of NE released during SNS was significantly reduced (n = 5).

| Tab 1. Influence of ramipril on release of norepinephrine (NE) induced by cardiac sympathetic nerve stimulation (10 Hz, 35 mA, 1 min) in isolated rabbit hearts. Two stimulation periods with intervals of 20–30 min were applied in each experiment. n = 5, X ± SD, *p < 0.05, **p < 0.01, ***p < 0.001 vs. Stimulation1. |
|---|---|---|---|
| Time of stimulation (s) | NE release (ng/ml) | Stimulation1 | Stimulation2 |
| Control | | | |
| 15 | 3.7 ± 1.8 | 3.8 ± 2.0* | |
| 30 | 8.7 ± 2.1 | 9.3 ± 2.5* | |
| 45 | 10.2 ± 2.7 | 9.3 ± 2.1* | |
| 60 | 10.0 ± 2.3 | 8.1 ± 2.1* | |
| Ramipril | | | |
| 15 | 5.4 ± 1.3 | 1.7 ± 0.8** | |
| 30 | 8.4 ± 1.7 | 3.4 ± 1.2*** | |
| 45 | 9.0 ± 2.0 | 2.8 ± 0.9** | |
| 60 | 9.2 ± 1.8 | 2.1 ± 0.8** | |

DISCUSSION

The RAS other than the sympathetic nervous system in the regulation of blood pressure played an important role. ACEI strongly reduced the peripheral resistance.
and lowered the blood pressure, but the precise mechanism of these effects was not elucidated(1). Until recently, RAS inhibition was argued by Unger et al. to be the only mechanism by which they elicited antihypertensive effects. Other factors might also be involved, e.g., by their interaction with the sympathetic nervous system through influences on angiotensin II synthesis(2).

In the present study, it has been demonstrated that cardiac SNS resulted in an increase of NE; after the addition of ramipril to the perfuse, NE release was significantly reduced. The results suggest that the release of cardiac sympathetic neurotransmitter, NE, can be modified by the inhibition of this converting enzyme system.

Angiotensin II could facilitate the transmission of NE at the sympathetic ganglia and increase the release of NE from the adrenergic nerve terminals is the heart(3). From our results it may be deduced that the inhibitory action of ACEI on the SNS-induced release of NE is related to the reduction of angiotensin II conversion in the heart, thus attenuates angiotensin II cardiac sympathetic neurotransmitter. This may contribute partly to the mechanism of the antihypertensive action of ACEI.

Thus, ramipril as an ACEI reduced NE release during cardiac sympathetic nerve stimulation. This effect may be involved in the angiotensin II-mediated facilitation of adrenergic neurotransmission.

REFERENCES

1 Xiang ZZ, Schöllkens BA, Lint W, Unger T, Ganten D, Lang RE. Comparisons of effects of HOE 140 and enalaprilat in isolated guinea pig heart and rat myocardium. Acta Pharmacol Scand 1986: 8: 95
3 Xiang ZZ, Schöllkens BA, Ganten D, Unger T. Effects of sympathetic nerve stimulation are attenuated by the converting enzyme inhibitor Hoe-248 in isolated rabbit hearts. Clin Exp Hypertens (A) 1986; 8: 1835
5 Fuder H, Mascholl E, Wegwart R. The effect of methacholine and calcium deprivation on the release of the false transmitter-methyl-adrenaline from the isolated rabbit heart. Ibid 1974; 283: 323

雷米普利对离体兔心交感神经刺激期间去甲肾上腺素释放的影响

向维敏 (南华大学临床药理研究所, 汉口 430071, 中华) Bernard W SCHÖLLKENS (Department of Pharmacology, Erasmus AG, 4339 Frankfurt am Main 80, FR Germany)

摘要 本文研究离体兔心交感神经刺激期间去甲肾上腺素的释放及雷米普利(ramipril)对促交感去甲肾上腺素释放的抑制作用, 交感神经刺激引起去甲肾上腺素释放增加2.5-5.2 ng/mL, ramipril 10 μg/mL(1 min)加入后20 min后, 去甲肾上腺素的释放量显著减少(P<0.05-0.01). 结果提示, ramipril作为一种新型ACE, 可能干扰了去甲肾上腺素释放的额外机制, 从而作用于去甲肾上腺素释放而起降压作用。