High-throughput screening for human collagenase 1 inhibitors

YE Qi-Zhuang, NAN Fa-Jun, HU Liang-Yan, QIAN Zhen, QIAN Jing
(National Centers for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China)

KEY WORDS high-throughput screening; drug screening; matrix metalloproteinase

ABSTRACT

AIM: To establish a high-throughput method for inhibitor screening using a recombinant collagenase catalytic domain. METHODS: Human collagenase 1 catalytic domain protein was expressed in E. coli and used for screening a set of 2720 compounds in a high-throughput fashion. RESULTS: The screening was accomplished within 2 h and 10 min with consumption of each compound at 4 μg. Sixty-six compounds were identified with > 60 % inhibitory activity at 20 mg/L, among which 44 compounds were confirmed by subsequent testing at multiple concentrations. The most potent compound showed an IC_{50} of 4.3 μmol/L, and there were total 15 compounds with IC_{50} less than 20 μmol/L. CONCLUSION: The high-throughput method using the recombinant collagenase is fast, effective and practical in identifying inhibitors.

INTRODUCTION

Drug discovery is largely still an empirical process and relies heavily on accidental findings and random screening of samples from various sources. Recent advances in combinatorial chemistry and natural product chemistry could offer a large number of pure compounds or mixtures for such screening, and high-throughput screening (HTS) technologies have been widely applied to drug discovery process. The combination of sample preparation from combinatorial synthesis and natural product isolation with enzyme/receptor-based and cell-based HTS methods will certainly accelerate the drug lead generation for further development as useful therapeutic agents.

Collagenase 1 is a member of the matrix metalloproteinase (MMP) family that participates in normal connective tissue remodeling by degrading protein components in connective tissues. MMP have also implicated in several diseases involved in connective tissue degradation such as cancer metastasis, arthritis, multiple sclerosis, and periodontal diseases. Extensive researches have been carried out both academically and by pharmaceutical industry to find effective and selective inhibitors for MMPs as potential drugs for such diseases.

The protein sequence of human collagenase 1 is typical among MMPs with distinctive region for the catalytic domain. Evidence has been shown that the MMP catalytic domains usually have similar catalytic efficiency as the full length MMPs and can be used as a tool for screening MMP inhibitors. We report here the development of an HTS assay using a recombinant human collagenase 1 catalytic domain (C1CD) protein, and the screening results from 2720 pure synthetic compounds.

MATERIALS AND METHODS

Materials and instruments. The EST clone (Genbank number: AA082736, EST clone number: 549904) containing the gene for human collagenase 1 catalytic domain were purchased from Genome Systems (St Louis, MO, USA). Thiopeptolid Ac-Pro-Leu-Gly-thioester-Leu-Leu-Gly-OEt was purchased from Bachem Bioscience (King of Prussia, PA, USA). Other reagents and solvents used in the experiments are analytic grade or reagent grade as appropriate.

The plasmid pGEMEX-1 and E. coli strain JM109/DE3 were purchased from Promega (Madison, WI, USA). Restriction enzymes and other enzymes used in DNA cloning were purchased locally.
Samples used in the HTS assays are all small organic compounds with purity higher than 90%, either purchased or collected from different sources with wide structural diversity.

Biomek 2000 liquid handling workstation from Beckman (Fullerton, CA, USA) was used for liquid handling, and SPECTRAmax 340 96-well plate reader from Molecular Devices (Sunnyvale, CA, USA) was used for kinetic monitoring and end point readings.

Sample preparation Individual compounds (1 mg each) were dissolved in 200 μL of Me₂SO as 5 g/L solutions. The solution was diluted 5 fold by adding 20 μL of the solution to 80 μL of Me₂SO in the sample wells (A2-H11) of 96-well polypropylene plates as mother plates with the layout format shown in Fig 1, and the concentration was 1 g/L for each compound. All mother plates were duplicated to polystyrene plates as daughter plates for screening by transferring 2 μL of the solution using the Biomek 2000 workstation.

![Figure 1. Layout of samples (open circles), blanks (shaded circles), and controls (filled circles) on the 96-well plate. Rows A to H and columns 1 to 12 are shown.](image)

Cloning, expression, and purification of C1CD protein Several MMP catalytic domains have been cloned and expressed in E. coli. The gene of the C1CD protein was amplified from the EST clone with the primers CCGATCTCATGATTTGTCCTCCTGTCTCAGGGGAA and GGGATCTCATGATTTGTCCTCCTGTCTCAGGGGAA (the coding sequences are underlined) with introduction of restriction sites for NheI and EcoRI. The DNA fragment was cloned into the plasmid pGEMEX-1 for expression in E. coli under the control of a TT promoter. The recombinant plasmid pGEMEX-C1CD containing the C1CD gene was transformed into an E. coli strain JM109/DE3. The transformed cells were cultured in 2XTY medium in a 2-L fermenter, and the expression of C1CD protein was induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG).

The C1CD protein was obtained as insoluble protein. The cells were lysed by sonication, and the pellet after centrifugation was washed with 50 mmol/L Tris (pH 7.6) 3 times before dissolving in urea 6 mol/L. The C1CD protein in urea was added dropwise to a refolding buffer (50 mmol/L Tris, pH 7.6, 10 mmol/L CaCl₂, and 10 μmol/L ZnCl₂) stirred at 4°C. The mixture was centrifuged, and the supernatant containing the refolded C1CD protein was loaded to a Q-Sepharose column equilibrated previously with 50 mmol/L Tris (pH 7.6) and 10 mmol/L CaCl₂. The C1CD protein was eluted with a linear gradient from 0 to 1 mol/L NaCl in the Tris/CaCl₂ buffer, and fractions containing C1CD protein were collected and concentrated. The C1CD protein was active and showed as a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis.

C1CD activity assay The C1CD activity was evaluated using the thiopeptolide Ac-Pro-Leu-GlyThr-Leu-Leu-Gly-OEt as the substrate. Cleavage of the thiopeptolide generates a free thiol group, which reacts immediately with 5,5'-dithiobis(2-nitrobenzoic acid (DTNB) to produce a substance with UV absorption (ε₄₁₂nm = 13 600 M⁻¹⋅cm⁻¹) in the hydrolys process can be monitored kinetically on 96-well plate.

In a total 100 μL assay volume, the final concentrations were 50 mmol/L Tris (pH 7.0), 10 mmol/L CaCl₂, 1 mmol/L DTNB, 100 μmol/L thiopeptolide, and C1CD protein and inhibitors at different concentrations. The hydrolysis was monitored at 412 nm on SPECTRAmax 340 plate reader for 2 - 5 min at room temperature.

C1CD HTS activity assay On the daughter plates, Me₂SO solvent (2 μL) was distributed in eight blank wells (A1-D1, E12-H12), and controls are in another eight wells (E1-H1, A12-D12) using known MMP inhibitor Galardin solution in Me₂SO (2 μL; 3 μmol/L, 1 μmol/L, 333 nmol/L, and 111 nmol/L) (Fig 1).

An assay mix (88 μL), which contains 10 μL of 500 mmol/L Tris (pH 7.0), 1 μL of 1 mol/L CaCl₂, 10 μL of 1 mmol/L thiopeptolide, 1 μL of 100 mmol/L DTNB (in ethanol), and 66 μL of water, was added to each well, followed by addition of 10 μL of C1CD protein (200 nmol/L in 50 mmol/L Tris, pH 7.6, and 10
mmol/L CaCl₂) in 12 successions with 8-channel pipette on Biomek 2000 to all wells. The plate was transferred to the plate reader for immediate reading at 412 nm. UV absorption change was monitored for 8 min, and slope of the absorption change was recorded (Fig 2).

The average of the slopes for the 8 blanks was used as 100 % activity. The slope from control wells or compound wells was divided by the average, giving percent activity in the presence of the inhibitor Galardin or the screening compound (Fig 2).

![Figure 2](image_url)

Since Me₂SO was used in dissolving compounds for the HTS assays, we investigated the effect of Me₂SO on C1CD activity. As increase of Me₂SO concentration, the activity of C1CD decreased accordingly. The C1CD protein showed (91.6 % ± 6.4 %) activity at 1 % Me₂SO, (82.9 % ± 1.9 %) activity at 2 % Me₂SO, (75.3 % ± 4.8 %) activity at 5 % Me₂SO, and (65.0 % ± 6.8 %) activity at 10 % Me₂SO, compared with no Me₂SO as 100 % activity. The data suggested that presence of 2 % Me₂SO in the HTS assay did not significantly affect the C1CD enzymatic activity. In the presence of 2 % Me₂SO, the rate of the thiopeptide hydrolysis showed good linear increase up to 400 nmol/L C1CD we tested. For a reasonable signal to noise ratio, we chose 20 nmol/L of C1CD protein for the HTS assays.

High throughput screening of 2720 compounds

After initial experiments mentioned above, we defined the final condition for the HTS assay as 20 nmol/L C1CD protein, 100 μmol/L thiopeptide, 1 mmol/L DTNB, 50 mmol/L Tris (pH 7.0), 10 mmol/L CaCl₂, 2 % Me₂SO, and 20 mg/L screening compounds, in a total volume of 100 μL. Me₂SO solvent was used as blanks, and Galardin in Me₂SO at 60, 20, 6.7, and 2.2 nmol/L final concentrations was used as controls.

The total 2720 pure compounds were accommodated on 34 96-well plates. With 2 μL each of blanks (Me₂SO solvent), controls (Galardin in Me₂SO), and compounds (in Me₂SO) distributed on the 96-well plates, assay mix (Tris, CaCl₂, DTNB, and the thiopeptide) and the C1CD protein were added separately and sequentially, before kinetically monitoring the UV absorption at 412 nm for 3 min. The addition of assay mix and C1CD protein took less than 3 min for each plate and was carried out simultaneously as the kinetically monitoring, so that the total assay time for each plate was limited by the plate reading. It took a little over 3 min for each plate, and we finished the HTS assay in 2 h 10 min for 34 plates with total 2720 compounds.

Compounds with no effect on C1CD activity showed the slope of UV absorption change similar to the blanks, while those compounds with C1CD inhibition changed the slope to a reduced number by different degrees, reflecting their inhibitory potency on C1CD (Fig 2). A fraction of compounds (55 out of the total 2720 compounds) showed irregular slopes due to precipitation during the reading, and their data were not usable. However, deep color or slight cloudy appearance affected endpoint readings but

RESULTS

Characterization of C1CD activity

The recombinant C1CD protein, like other MMPs, cleaves several synthetic chromogenic and fluorogenic substrates. We used the thiopeptide Ac-Pro-Leu-Gly-thioester-Leu-Leu-Gly-OEt as substrate and monitored its hydrolysis by UV absorption at 412 nm. The purified C1CD protein showed K_m of (750 ± 150) μmol/L and k_{cat} of (24.6 ± 2.4) s⁻¹ in hydrolyzing the thiopeptide, similar to literature values\(^{(22)}\).

Figure 2. Typical data conversion from kinetic reading to percent activity. A. Raw data showing the absorption change at 412 nm over a period of 3 min in each of the 96-wells (layout of samples, blanks, and controls as shown in Fig 1). B. Slopes for the absorption change in each well. C. Converted percent activity in each well.
did not seem to affect kinetic reading.

As expected, most compounds showed no or weak inhibition. There were 227 compounds showed 20% – 40% inhibition, 70 compounds showed 40% – 60% inhibition, 40 compounds showed 60% – 80% inhibition, 26 compounds showed larger than 80% inhibition, and the rest showed no inhibition or less than 20% inhibition at the assay concentration of 20 mg/L. We took the 66 compounds with higher than 60% inhibition as hits for further characterization, and the hit rate was 2.4% of the total 2720 compounds.

Quality controls in the HTS assay In order to handle a large number of compounds in an HTS assay and manage huge amount of information generated, it is the common practice to assay compounds only at a single empirical concentration with hope to identify hits for further investigation. To differentiate fluctuations due to liquid handling and instrument reading from real inhibition, we tested the precision in pipetting and instrument reading in situations we used for our HTS assays.

We first tested the precision of pipetting by Biomek 2000 liquid handling workstation using the dye Bromophenyl Blue (BPB) as the indicator, measuring absorption at 592 nm on 96-well plates. When 2 μL of BPB in Me₂SO was added to dry plates, simulating compound distribution to daughter plates, the CV was 7% across the entire plate (Fig 3), and when 10 μL of BPB in 50 mmol/L Tris (pH 7.0) was added to 50 μL of 50 mmol/L Tris (pH 7.0), simulating our enzyme addition, the CV was within 6% (Fig 3).

We also investigated the fluctuations in thiopeptide hydrolysis by C1CD kinetically with Me₂SO solvent in places of the 80 compounds in Me₂SO, and we found that the readings for the last three columns showed gradual decrease with the right most column being the lowest (Fig 4). The abnormal reading could not be due to pipetting error, since we did not see such trend in BPB tests mentioned above. The likely reason is that the right side of the plate is close to the drawer opening, and the lower temperature may contribute to the slower hydrolysis kinetically. We applied correction factors to each column for kinetic data, and we obtained a uniform data across the entire plate with the CV at 4% (Fig 5). We observed the same trend in the data from the 34 sample plates, so that we also applied the same correction factors to each column for those data.

We used the known MMP inhibitor Galardin as the control at four final concentrations (60, 20, 6.7, and 2.2 mmol/L). Consistently, Galardin showed C1CD inhibition with the expected potency with IC₅₀ at 11.8 mmol/L using the pooled data from the 34 plates (Fig 6). Galardin inhibited collagenase 1 at Kᵢ, of 0.4 mmol/L[^13], and it is likely that Galardin was titrating C1CD protein under our HTS assay condition since our C1CD protein final concentration was 20 mmol/L.

With these results we determined the degree of fluctuation due to pipetting and reading, and can comfortably conclude that we would most likely see an inhibition if the compounds to be screened has a significant inhibitory activity.
Fig 5. Fluorimetric determination of absorbance at 412 nm after 3 min of incubation. The averages for each column and row (except for control wells) are shown as bold face, and CV are shown as italics.

![Activity% vs Galardin concentration](image)

Fig 6. Inhibition of CDC activity by Galardin from pooled data from 34 96-well plates.

at the concentration of 20 μmol/L under our HTS condition.

Characterization of the hit compounds The 66 compounds with inhibition higher than 60% were further investigated at 8 concentrations (33 mg/L, 11 mg/L, 3.7 mg/L, 1.2 mg/L, 407 μg/L, 136 μg/L, 45 μg/L, and 15 μg/L). Among those tested, 44 compounds showed IC₅₀ lower than 20 μmol/L, generating a confirming rate of 67%. Other 22 compounds showed either IC₅₀ higher than 20 μmol/L or showed precipitation and were considered false positives.

After taking their molecular weights into account for each active compounds, the best compound obtained from this screening showed an IC₅₀ at 4.2 μmol/L, followed by those with IC₅₀ at 7.1, 8.4, 8.7 μmol/L. There were total 15 compounds with IC₅₀ lower than 20 μmol/L, and 20 compounds with IC₅₀ between 20 and 40 μmol/L, demonstrating the power of the HTS assay in identifying leads for MMP inhibitors. These compounds are under further structure-activity analysis and structural modification for developing potent and selective MMP inhibitors.

DISCUSSION

Random screening has gone through a throughput improvement in recent years, thanks for the advances in sample preparation, assay development, and screening technologies. What took 1 year to screen 10 000 compounds 10 years ago, it takes only days or less to screening even 100 000 compounds[16]. Usually, the capability of screening 10 000-100 000 compounds per day is considered as high-throughput. We carried out the screening of 2720 compounds during 2 h 10 min, and with sufficient supply of compounds, reagents, and disposables, we could screen close to 10 000 compounds in 8 h and close to 30 000 compounds over a 24-h period, qualifying our screening as a high-throughput screening.

However, we should point out that although the actual screening time was short, it took much longer for weighing a large number of compounds, making mother plates and daughter plates before the actual screening, in addition to the time spent on assay development and recombinant protein production. With the assay throughput reaches a certain level, the bottleneck for improving further the overall throughput will be the plate preparation before the screening and hit confirmation and characterization after the screening.

We achieved this throughput with only limited automation equipments. The two main instruments used are Beckman's Biomek 2000 for liquid handling, and Molecular Devices' SPECTRAmax 340 with a total capital investment of around USD $80 000. The main cost for the screening was on reagents and plastics, which was under RMB ¥10 or USD $1 for each well.

Another advantage in our HTS assay is saving compounds. At 20 μmol/L final compound concentration, only 4-μg compound was used in each well. This low demand on compounds is especially helpful for compounds hard obtained from natural sources. Once a Me₂SO solution was made from 1 mg compound, it can be used for several assays, increasing the chance of finding its biological activity.

One unique feature in our HTS assay is monitoring of the hydrolysis kinetically, in contrast to endpoint determination used by most people in pharmaceutical indus-
try. The kinetic monitoring measures the change of UV absorption over a period of time, and thus, it tolerates the interferences from color or other fixed absorption and loosens the requirement for accurate timing of reading. It does require transferring plate once the addition of reagents was finished. Without mechanical devices for automated plate transfer, plate transfer manually could be labor-intensive. Therefore, with proper arrangement of personnel and automation for labor-intensive steps, the kinetic methods could be very useful techniques for certain types of drug screening.

With the collagenase inhibitor HTS screening, we have demonstrated that HTS assays can be carried out with limited instruments and budgets. With the small-scale screening, we have found C1CD inhibitors with low micromolar inhibitory potency, offering the clues for further drug discovery and development.

REFERENCES