Effect of MCI-154, a calcium sensitizer, on calcium sensitivity of myocardial contractile system in endotoxicemic rats

MEI Jian-Min, HU De-Yao, CHEN Hui-Sun, LIU Liang-Ming, XIAO Nan, CHEN Hai-Hua, LU Ru-Quan (Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China)

KEY WORDS endotoxemia; cardiotoxic agents; papillary muscles; calcium; MCI-154

ABSTRACT

AIM: To investigate the effect of MCI-154 on calcium sensitivity of myocardial contractile system in endotoxicemic rats. METHODS: Skinned right ventricular papillary muscles from endotoxicemic rats were prepared by saponin 500 mg/L. Forces of the skinned muscles were recorded when they were activated sequentially by different concentrations of Ca²⁺ with or without cardiotoxic agents. The tension-pCa relationship and pCa₀ of the skinned fibers were taken as the index of Ca²⁺ sensitivity of myocardial contractile system. RESULTS: The maximal Ca²⁺-activated tension (Tₘₐₓ) was lower, and pCa₀ was reduced in endotoxicemia group as compared with those in sham control group. Milrinone 50 μmol/L could not counteract the above abnormalities. However, after MCI-154 10 μmol/L was added, the Tₘₐₓ and pCa₀ were increased to an extent similar to that of sham control group and significantly higher than those of endotoxicemia group and endotoxemia + milrinone group. Furthermore, such effects of MCI-154 were concentration-dependent. CONCLUSION: The Ca²⁺ sensitivity of cardiac contractile system in endotoxicemic rats is decreased. MCI-154 can reverse the decreased sensitivity and increase Tₘₐₓ of myocardial muscles from endotoxicemic rats.

INTRODUCTION

Evidence suggests that a decrease in Ca²⁺ sensitivity of myocardial contractile proteins is one of the important causes of cardiac depression during endotoxic shock. Recently, a new kind of positive inotropic agents, Ca²⁺ sensitzers, have been developed. It has been shown that Ca²⁺ sensitzers can augment myocardial contractility and improve cardiac function by interacting with tropoion C (TnC), increasing the affinity of TnC for Ca²⁺ and prolonging the life span of the Ca²⁺-induced conformation of TnC. In order to improve the cardiac depression during endotoxic shock, it seems to be more desirable to restore the initial high Ca²⁺ sensitivity by means of a calcium sensitizer, rather than to increase the intracellular free Ca²⁺ concentration (½[Ca²⁺]i) that is likely to cause Ca²⁺ overload in myocytes. As yet, however, little information is available about the effect of a calcium sensitizer on Ca²⁺ sensitivity of myocardial contractile proteins in endotoxic shock. We previously reported that MCI-154, 6-[4-(4'-pyridyl)aminophenyl]-4,5-dihydro-3(2H)-pyridazinone hydrochloride, a calcium sensitizer, can produce remarkable therapeutic effects on endotoxic rabbits, and that MCI-154 can augment the contractility of the left ventricular papillary muscles from endotoxic rats. Thus, it was of interest to explore the possible mechanism underlying the above effects of MCI-154. In this study, we investigated the effect of MCI-154 on Ca²⁺ sensitivity of myocardial contractile proteins using skinned fibers from the right ventricular papillary muscles of endotoxicemic rats.

MATERIALS AND METHODS

Models of endotoxic shock and sham shock

Thirty-two male and female (1:1) Wistar rats (120 - 150 g, Grade I, Certificate No 19050) were provided by Experimental Animal Institute of Third Military University. The rats were fasted for 12 h prior to the experiment but were allowed water ad lib and were randomly divided in-
to four groups of eight each; group I, sham control group; group II, endotoxemic group; group III, endotoxemia + milrinone 50 µmol/L group; group IV, endotoxemia + MCI-154 10 µmol/L group. Endotoxemia or sham control was induced by ip injection of endotoxin 10 mg·kg⁻¹ or equivalent sterile saline, respectively. Eight hours after the injection of endotoxin and saline, the models were completed. The percentage fall in the mean arterial pressure (MAP) was 40% - 50% at 8 h following the injection of endotoxin.

Preparations of skinned right ventricular fibers Skinned right ventricular papillary muscles of rats were prepared according to the method of Huang et al[4] with some modifications. Eight hours after the injection of endotoxin or saline, the rat was decapitated and the heart was rapidly excised and placed in an oxygenated physiological solution of the following composition (mmol/L): NaCl 130, KCl 4, CaCl₂ 1.5, MgCl₂ 0.5, glucose 10, Tris 10, bubbled with 95% O₂ + 5% CO₂, pH 7.4, at 25 °C. A small bundle of papillary muscles with a diameter < 1 mm was dissected from the right ventricle and mounted in a tissue bath containing 20 mL relaxing solution between two miniature clamps. The composition of the solution was as follows (mmol/L): KCl 140, MgCl₂ 5, egtacizic acid 10, imidazole 25, Na₂ATP 5, phosphocreatine (PC) 10, phosphocreatine kinase (PK) 0.1 g/L, pH 7.2, at 25 °C. The upper clamp was connected by silk suture to a precalibrated force transducer (Statham UC2, Gould, USA) for measuring isometric tensions on a multichannel recorder (RM6200, Nihon Khoden, Japan). The lower clamp was mounted directly on a stationary rod at the bottom of the tissue bath. The muscles were equilibrated for 15 min. To obtain skinned fibers, the muscles were exposed to skinning solution (relaxing solution containing saponin 500 mg/L) at 25 °C for 30 min. Saponin 500 mg/L perforated not only the surface membrane but also the membrane of sarcoplasmic reticulum (SR).[5] Then, the skinning solution was washed out completely with relaxing solution, and muscles were stretched to 130% of their natural length (length without resting tension in the bath) with an integral micromanipulator.

Determination of Ca²⁺ sensitivity of the skinned fibers Force induced in the skinned papillary fibers was recorded when they were activated sequentially by different Ca²⁺ activating solutions. The concentration of free Ca²⁺ was expressed as pCa (lg [Ca²⁺]). CaCl₂ and egtacizic acid were added to make different activating solutions with pCa ranging from 7.0 - 4.0 (CaCl₂ 3.83 - 10.31 mmol/L), pH 7.2, at 25 °C according to the program developed by Fabiato et al.[6] (supplied by Laboratory of Cardiovascular Physiology, Hunan Medical University, China). In group III and group IV, the skinned fibers from endotoxemic rats were activated by different pCa activating solutions containing milrinone 50 µmol/L or MCI-154 10 µmol/L, respectively (our preliminary experimental result: the EC₅₀ of MCI-154 was 5 times less than that of milrinone). The activating time for each experiment was 5 min. At the end of the experiment, the muscles were dried by filter papers and weighed. The Ca²⁺-activated tensions were normalized by muscle’s cross-sectional area (CSA), which was calculated by dividing muscle mass by specific gravity and the length of the muscle. The tension recorded at pCa 4.0 was taken as the maximum (Tmax). Relative tension at pCa 7.0 - 4.5 was expressed as the percent of Tmax. Tension-pCa relationship curves were plotted, and pCa₅₀ was calculated using Hill equation: T = [Ca²⁺]ⁿ/(Kᵣ + [Ca²⁺]ⁿ), where T is relative tension (%), n is the Hill coefficient, and K is Ca²⁺ concentration required for producing 50% of Tmax, (lgK) is the curve’s medium value pCa₅₀, which can be taken as the quantitative index of the affinity of TnC for Ca²⁺[8].

Effect of different concentrations of MCI-154 on Ca²⁺ sensitivity of skinned right ventricular papillary muscles Three right ventricular papillary muscles isolated from each rat in group IV were used in this experiment. Muscles were divided into 3 groups with activating solutions containing MCI-154 1 µmol/L (group A, n = 8), 10 µmol/L (group B, n = 8), 100 µmol/L (group C, n = 8), respectively. The experimental procedures and data management were the same as that mentioned above.

Drugs Endotoxin (Escherichia Coli, O111:B4), saponin, PC, PCK, CaCl₂, egtacizic acid, Na₂ATP were all purchased from Sigma Company. MCI-154 (grey powder, M₉ 266, mp 250 - 251 °C, Purity > 99.5%) was supplied by College of Pharmacy, the Second Military Medical University, China; Milrinone was purchased from Chongqing Medical Industrial Company. All other chemicals were of analytical purity. All the solutions were prepared demineralized water. PC, PCK were added to the solutions shortly before the experiment. This study was performed in accordance to the Chongqing Council for Animal Research Guidelines for the Use of Experimental Animals.
Statistical analysis Experimental values were expressed as $\bar{x} \pm s$. Statistical differences between groups were assessed by analysis of variance and a multiple comparison procedure (Student-Newman-Keuls’ test).

RESULTS

Effect of MCI-154 on Ca$^{2+}$ sensitivity of the skinned fibers There were no significant differences among the four groups with regard to the weight, length and CSA of the papillary muscles. The T_{max} in endotoxemia + MCI-154 group was increased to the level of sham control group, higher than those of endotoxemia group and endotoxemia + milrinone group ($P < 0.05$) (Tab 1). The values of relative tensions at pCa 6.5 - 5.0 in endotoxemic group and endotoxemia + milrinone group were lower ($P < 0.05$, $P < 0.01$, respectively), resulting in the rightward shift of the tension-pCa relationship curves (Fig 1). However, the relative tension at pCa 6.5 - 5.0 in endotoxemia + MCI-154 group were increased to an extent similar to that of sham control group, higher than those of endotoxemia group and endotoxemia + milrinone group ($P < 0.05$, $P < 0.01$, respectively), and the tension-pCa relationship curves were shifted leftwards.

![Fig 1. Change in relative tension of skinned papillary muscles from endotoxemic rats following administration of milrinone and MCI-154. n = 8, $\bar{x} \pm s$. $P < 0.05$, $P < 0.01$ vs sham control. $P < 0.05$, $P < 0.01$ vs endotoxemia group.](image)

DISCUSSION

Although studies conducted in isolated myocardial tissues and isolated myocytes from endotoxic shock animals showed that Ca$^{2+}$ sensitivity of myocardial contractile system was decreased,$^{[1,11]}$, the mechanisms responsible for the phenomenon remain obscure. Experiments have suggested that the decreased Ca$^{2+}$ sensitivity of
myocardial filaments during hypoxia, ischemia was associated with changes in the levels of intramyocardial metabolites like the decrease in pH, and the decline in PC concentration or accumulation of inorganic phosphate (Pi) near crossbridges. In fact, studies showed that acidosis and the addition of Pi decreased Ca²⁺ sensitivity of the contractile proteins in normal cardiac fibers and reconstituted thin filaments. Possibly, the above abnormalities exist and contribute to the decreased Ca²⁺ sensitivity of myocardial contractile system during endotoxic shock. Therefore, it is of clinical significance to survey novel cardiotonic agents that improve the cardiac depression during endotoxic shock by increasing Ca²⁺ sensitivity of myocardial contractile system. Our previous study showed that MCI-154, a calcimimetic, could produce a strong positive inotropic effect on myocardium from endotoxic shock rats. But the mechanisms underlying the effect are unclear.

By using the skinned myocardial preparations, we investigated the effect of MCI-154 on Ca²⁺ sensitivity of the myocardial contractile system in endotoxic rats. Our results indicated that the Ca²⁺ sensitivity in endotoxic rats was indeed decreased, as reflected by the decrease of T_{max} and $p_{Ca_{0}}$. Milrinone, a phosphodiesterase (PDE) inhibitor, could not increase the T_{max} and $p_{Ca_{0}}$ of the skinned papillary fibers from endotoxic rats. However, when skinned right ventricular papillary muscles were treated with activating solution containing MCI-154, the T_{max} was augmented to an extent similar to that of sham control group; the values of relative tensions at pCa 6.5 – 5.0 were markedly increased with a right shift in the tension-pCa relationship. The $p_{Ca_{0}}$ in MCI-154 treated group was significantly higher than that in endotoxic group and endotoxic + milrinone group. Furthermore, the above effects of MCI-154 were concentration-dependent.

The leftward shift in tension-pCa relationship and the increase of $p_{Ca_{0}}$ in this study suggested that the affinity of TnC for Ca²⁺ was enhanced by MCI-154. The increase of T_{max} indicated that MCI-154 could directly facilitate the interaction between actin and myosin and increase the ATPase activity of myocardial contractile proteins in endotoxic rats. The present study is in agreement with the experiment conducted by Kitada et al., which showed that MCI-154 increased the maximum tension, $p_{Ca_{0}}$ of the skinned fibers from myocardial papillary muscles of normal guinea pigs. So, the mechanisms of effects of MCI-154 found in normal myocardial tissue may also play significant roles in increasing the Ca²⁺ sensitivity of myocardial contractile system in endotoxic rats. Considering that a decrease in Ca²⁺ sensitivity of myocardial contractile apparatus and Ca²⁺ overload in myocytes contributed to the loss of cardiac contractility during endotoxic shock, MCI-154 may have advantages over conventional cardiotonic agents for improving cardiac dysfunction under this condition.

In conclusion, the present study has revealed that MCI-154 can directly increase the Ca²⁺ sensitivity of the contractile proteins in the skinned myocardial fibers from endotoxic rats. This may be responsible for its therapeutic actions in the treatment of endotoxic shock.

ACKNOWLEDGMENT This study was supported by Third Military Medical University, China. The authors are grateful to Dr WU Qiu-Ye of College of Pharmacy, Second Military Medical University, China for providing us with MCI-154.

REFERENCES

15 Kitada Y. MCI-154, a cardiac Ca\(^{2+}\) sensitizer, reverses the depression in maximal Ca\(^{2+}\)-activated force by inorganic phosphate and acidic pH in skinned fiber of guinea pig heart.