Probulcol inhibits lipid peroxidation of macrophage and affects its secretory properties

LIU Ge-Xiu, OU Da-Ming, LIU Jun-Hua, HUANG Hong-Lin, LIAO Duan-Fang
(Department of Pharmacology, Hengyang Medical College, Hengyang 421001, China)

KEY WORDS probulcol; macrophages; lipid peroxidation; secretin

ABSTRACT

AIM: To investigate the mechanisms of anti-atherogenic actions of probulcol. METHODS: Human peripheral blood monocytes were cultured, and treated by copper ion (10 μmol/L) and/or probulcol (PBC). Lipid peroxidation was measured by assaying malondialdehyde (MDA). The cytokine interleukin-1 beta (IL-1 beta) and apolipoprotein E (apo E) secreted by monocyte were assayed by enzyme linked immunosay (ELISA). RESULTS: PBC 10 - 80 μmol/L inhibited copper ion-induced cellular lipid peroxidation from 15.30 to 7.74 μmol MDA/g cell protein. PBC 40 μmol/L inhibited oxidized macrophage-mediated oxidation of LDL from 5.18 to 1.65 μmol MDA/g cell protein, and attenuated secretory properties of monocytes induced by copper ion. The release of apo E, which is involved in reverse cholesterol transport, increased by 65 %. And the release of IL-1 beta, which was shown to enhance vascular smooth muscle cell proliferation, decreased by 45 %. CONCLUSION: Probulcol inhibits lipid peroxidation of macrophages and affects their secretory properties.

INTRODUCTION

Extensive oxidative modification of low density lipoprotein (LDL) may occur in an antioxidant-depleted subendothelial microenvironment. Cells of the arterial wall, including endothelial cells, smooth muscle cells, and macrophages, can oxidize LDL in vitro in the presence of catalytic amounts of transition metal ions. Recently Fuhrman et al have shown that macrophages subjected to oxidative stress can oxidize LDL even in the absence of metal ions, which may be mediated by lipid peroxidation of macrophages. Probulcol (PBC) possesses properties of a superoxide free radical scavenger in vitro, and can inhibit oxidative modification of LDL and monocyte adhesion to endothelial cells. Another study showed that PBC inhibited macrophage accumulation in atherosclerotic plaque and restenotic vascular endothelium. These studies suggest that PBC is involved in regulation of macrophage functioning, but its mechanism is not known. Secretion of interleukin-1 beta (IL-1 beta) and apolipoprotein E (apo E) by macrophages is very important in formation of atherosclerotic lesion. IL-1 beta may serve as an important regulatory factor in the development of atherosclerosis by stimulating the proliferation of VSMC and their transformation to the synthetic state for the formation of the atherosclerotic lesion. Monocyte-macrophage apo E in the vessel wall and HDL-apo E probably induces a high cholesterol efflux from the macrophages. Therefore, we investigated whether PBC can inhibit lipid oxidation of macrophages and influence secretion of IL-1 beta and apo E by macrophages in vitro.

MATERIALS AND METHODS

Preparation of LDL Native LDL (D = 1.019 - 1.063 kg/L) was isolated from plasma of normolipidemic fasting volunteers by sequential ultracentrifugation. Then it was dialyzed in buffer A (NaCl 0.9 % + TDA 0.5 % w/v). The amounts and concentrations of LDL were expressed in terms of protein.

Isolation and culture of monocytes According to our previous procedure, human peripheral blood monocytes were obtained from heparinized blood by the following steps: (1) conventional Ficoll-Hypaque density
gradient separation of whole mononuclear cell fraction; ii) incubation of mononuclear cells on treated plastic dishes in medium 199 (M199) plus 20 % fetal calf serum (FCS) (v/v) to isolate monocytes by adherence; iii) after 1 h of culture, during which most lymphocytes spontaneously detached, the monolayer was washed and the monocytes were detached by incubation at 4 °C in PBS containing 0.2 % edetic acid (w/v) and 5 % FCS; iv) suspension of monocytes in M199 plus 1 % FCS (cell count: 0.5 × 10^6 – 1.2 × 10^6 cell/L). More than 90 % of the purified cells were viable as identified by 0.4 % trypan blue exclusion test.

Effect of PBC on cellular lipid peroxidation

In order to eliminate the interference of the medium colour with the production of the pink chromophore during MDA determination in the medium, the cells were incubated in RPMI-1640 medium without phenol red supplemented with benzylpenicillin 100 kU/L, streptomycin 100 mg/L, and 10 % heat inactivated (56 °C for 30 min) FCS with or without CuSO₄ 10 μmol/L and/or CuSO₄ 40, 80 μmol/L. At the end of the incubation period, the cell monolayer was washed three times with cold PBS. Then the cells were scraped into 1 mL PBS and sonicated for 15 s at 4 °C at 80 W. Aliquots were taken from the cell sonicate for lipid peroxidation assays. Formation of lipid peroxides was assayed in the cell sonicate using a commercially available kit (Institute of Nanjing Jiang Cheng Biological Engineering). The toxicity of CuSO₄ to monocytes was assayed by 0.4 % trypan blue, and more than 80 % of cells were viable.

Effect of PBC on oxidized macrophage-mediated oxidation of LDL

Macrophages were incubated at 37 °C for 12 h with or without CuSO₄ 10 μmol/L and/or PBC 40 μmol/L. Then the medium was removed, the cells were washed once with the medium and incubated with fresh medium containing LDL 100 μg·ml⁻¹ at 37 °C for 18 h and sonicated at the end of the incubation. The extent of LDL oxidation was analyzed directly in the medium containing cells by measuring the amount of thiobarbituric acid reactive substances (TBARS). LDL oxidation was identified by electrophoresis mobility.

Effect of PBC on macrophage secretion

IL-1 beta and apo E were determined by ELISA, using polystyrene microtiter wells precoated with an IL-1 beta antibody or apo-E monoclonal antibody. Briefly, microplates were coated with apo-E 10 μg or IL-1 beta monoclonal antibodies and blocked by 1 % BSA-PBS. Conditioned medium collected from control and oxidized cells was then added to the plates. After 4 h of incubation at room temperature, the plates were washed three times with PBS, then were added with relative mAbs and goat-antimouse HRP-GAM. OPD-H₂O₂ substrate was used.

Statistical analysis

Results are expressed as x±s, n = 6 experiments performed in triplicate. Statistical analysis was performed using t-test.

RESULTS

Inhibitory effect of PBC on macrophage lipid peroxidation

Cellular MDA was elevated 15-fold in human monocyte-derived macrophages treated with CuSO₄ 10 μmol/L at 37 °C for 12 h in comparison with control cells (Fig 1). PBC inhibited copper-induced macrophage lipid peroxidation at 10, 20, 40, and 80 μmol/L. MDA values decreased from 15.30 to 13.20, 8.76, 9.48, and 7.74 μmol/g cell protein.

Inhibitory effect of PBC on macrophage-mediated oxidation of LDL

Upon incubation of macrophages with LDL (100 mg/L) at 37 °C for 18 h in the presence of 10 μmol/L CuSO₄, a 4-fold increase in the cell-mediated oxidation of LDL was found in comparison with non-oxidized cells (Fig 2). Preincubation of macrophages with PBC 40 μmol/L resulted in 68 %
inhibition of copper-induced, cell-mediated oxidation of LDL (P < 0.01).

SECRETORY PROPERTIES OF MACROPHAGES EXPOSED TO PBC

The release of IL-1 beta from macrophages treated with 10 μmol/L CuSO₄ at 37 °C for 4 h increased by 5-fold in comparison with control non-oxidized cells (Tab 1). The release of apo E decreased by 60%. PBC 40 μmol/L inhibited 45% release of IL-1 beta from macrophages and increased 65% apo E release in comparison with oxidized cells.

Tab 1. Effect of PBC on oxidized macrophage secretory properties. n = 6. x ± s. *P < 0.01 vs control.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>CuSO₄ 10 μmol/L</th>
<th>CuSO₄ 10 μmol/L +</th>
<th>CuSO₄ 40 μmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 beta</td>
<td>70 ± 10</td>
<td>351 ± 43°</td>
<td>171 ± 22°</td>
<td></td>
</tr>
<tr>
<td>Apo E</td>
<td>116 ± 17</td>
<td>48 ± 9°</td>
<td>103 ± 18°</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Cells of the arterial wall, including macrophages, are shown to oxidize LDL by different mechanisms. Fuhrman et al. reported that copper ion induced lipid oxidation of macrophages, and the oxidized macrophages increased oxidation of LDL, leading to the formation of atherogenic oxidized LDL. Probulcol has been used as an antiatherogenic drug, due to its antioxidant property. The mechanisms of its antioxidative actions are still unknown. Therefore, we investigated whether PBC can inhibit lipid oxidation of macrophage in the presence of copper ion and demonstrated for the first time that PBC can inhibit lipid oxidation of macrophages induced by copper ion in vitro. During atherosclerosis, macrophage activation results in the production of oxygen reactive species through activation of NADPH-oxidase, xanthine oxidase, lipoxygenases and cyclooxygenases. These can further contribute to the oxidation of the cellular lipid constituents. Peroxidation of endogenous lipids such as cell membrane lipids can subsequently cause oxidation of extracellular LDL-lipids, which contributes to hyperlipidemia-induced atherogenesis, perturbation of enzyme activities, and the release of several cellular factors. Our previous data demonstrated that PBC protected endothelial cells against oxygen free radical damage, which may be due to its function as a superoxide free radical scavenger. The production of IL-1 beta in macrophages may contribute to the inflammatory response in atherosclerotic tissue. Letters et al have shown that progression of atherosclerosis in apo E/-/- mice is associated with increased aortic lipid peroxidation. All these suggest that IL-1 beta and apo E are involved in lipid oxidation in atherosclerosis. We found that PBC attenuated secretory properties of copper ion-stimulated macrophages, which enhanced secretion of apo E in macrophages treated with copper ion, and decreased the cytokine secretion of IL-1 beta.

Taken together, PBC was observed to inhibit lipid peroxidation of macrophages, and attenuate secretory function of oxidant-induced macrophages.

REFERENCES

10. Fuhrman B, Oiknine J, Aviram M. Iron induces lipid peroxi
dation in cultured macrophages increases their ability to oxidatively modify LDL and affect their secretory properties. Atherosclerosis 1994; 111: 66–78.

11 Schwartz CJ. Introduction-the probucol experience; a review of the past and a look at the future. Am J Cardiol 1980; 62; 1B–5B.

12 Steinberg D. Oxidative modification of low density lipoprotein and atherogenesis [abstract]. Circulation 1995; 92 suppl; 1–A.

丙丁酚抑制巨噬细胞脂质过氧化并调节其分泌功能

刘林修1, 欧大明2, 刘军花, 黄红林, 廖端芳
（衡阳医学院药理教研室，衡阳 421001，中国）

关键词 丙丁酚；巨噬细胞；脂质过氧化；分泌

目的：研究丙丁酚（probucol、PBC）的抗动脉粥样硬化机制。方法：采用 Cu²⁺（10 µmol/L）处理巨噬细胞，并观察了丙丁酚对巨噬细胞脂质过氧化及其介导的低密度脂蛋白氧化的抑制作用和对巨噬细胞分泌功能的影响。结果：10 – 80 µmol/L PBC 能抑制 Cu²⁺诱导的巨噬细胞脂质过氧化（MDA 从 15.30 抑制到 7.74 µmol/g cell protein，P < 0.01），且 PBC 处理的巨噬细胞介导的低密度脂蛋白氧化较对照组低（MDA 从 5.18 到 1.65 µmol/g cell protein，P < 0.05）。PBC 对 Cu²⁺诱导的巨噬细胞分泌 IL-1β 抑制 45 %，apo E 分泌增加 65 %。结论：丙丁酚在体内能抑制巨噬细胞脂质过氧化及其介导的低密度脂蛋白氧化，并调节巨噬细胞的分泌功能。

9th National Conference on Industrial Pharmacology
第九届制药工业药理学术会议

2000 Nov 20 – 25
Haikou, CHINA

Info: Prof LIU Guo-Qing (刘国卿)
Department of Pharmacology
China Pharmaceutical University
Nanjing 210009
CHINA

Fax 86-25-330-1655
E-mail liugg@mailbox.cpu.edu.cn