Effects of nitroprusside, 3-morpholino-sydnonimine, and spermine on calcium-sensitive potassium currents in gastric antral circular myocytes of guinea pig

LI Ying, Xu Wen-Xie, Li Zai-Liu
(Research Laboratory of Gastrointestinal Physiology, College of Medicine, Yanbian University, Yanji 133000, China)

KEY WORDS pyloric antrum; patch-clamp technique; nitroprusside; sydnonimine; spermine; tetrathylammonium; methylene blue

ABSTRACT

AIM: To determine the effect of nitric oxide (NO) on calcium-activated potassium currents in antral circular myocytes of the guinea pig stomach. METHODS: The whole-cell patch-clamp techniques were used, and the cells were isolated by collagenase. Sodium nitroprusside (SNP), spermine, and 3-morpholino-sydnonimine (SIN-1) were used as nitric oxide donors. RESULTS: Outward potassium currents were remarkably inhibited by tetrathylammonium (TEA) 1 mmol·L⁻¹. Charybdotoxin 200 mmol·L⁻¹, a specific inhibitor of K⁺ channels, also greatly increased I₅₃(c) in guinea pig gastric antral circular myocytes with perforated patch-clamp techniques but not conventional whole-cell patch-clamp techniques. Spermine 100 μmol·L⁻¹ increased I₅₃(c) by 14 % ± 10 % (at 60 mV, P < 0.01), SIN-1 200 μmol·L⁻¹ increased I₅₃(c) by 19 % ± 14 % (at 60 mV, P < 0.01), and SNP 100 μmol·L⁻¹ increased I₅₃(c) by 24 % ± 13 % (at 60 mV, P < 0.01) respectively. SIN-1 and SNP-induced increase of I₅₃(c) was blocked by methylene blue 1 μmol·L⁻¹. CONCLUSION: NO increases calcium-activated potassium currents in gastric antral circular myocytes of guinea pig, and the effect of NO on I₅₃(c) may be mediated by cyclic GMP.

INTRODUCTION

In our previous study, we have reported that exogenous nitric oxide (NO) inhibits gastric antral muscle motility in rat in vitro[1]. However, its ionic mechanism is not yet fully understood. A number of reports indicated that calcium-activated potassium current (I₅₃(c)) participated in NO-induced gastrointestinal inhibition[2–4]. Lu et al.[2] have observed that NO increases whole cell outward K⁺ current by activating K⁺ channels of rabbit colon smooth muscle cells through a cyclic GMP pathway. Recently, it has been reported that sodium nitroprusside (SNP) directly increases the number of active large conductance of calcium-activated potassium channels (BK channels) in the guinea pig colon smooth muscle cell[5]. On the contrary, Zhang et al.[4] have suggested that NO-mediated hyperpolarization may be produced by suppression of a Ca⁺⁺-stimulated Cl⁻ conductance in opossum esophageal smooth muscle. The effect of NO on K⁺ channel activity of gastric antral myocytes, however, is currently unknown. In the present study, to determine the effect of NO on I₅₃(c) in gastric antral circular smooth muscle cells (GACSMC) of the guinea pig, the effects of NO donors, SNP, SIN-1, and spermine, were investigated on I₅₃(c) using the conventional patch-clamp and perforated patch-clamp techniques.

MATERIALS AND METHODS

Preparation of cells EWG/B guinea pigs, bred in the Experimental Animal Department of Norman Bethune University, Certificate No 10-60004, either sex, weighing 250–350 g were used. Single smooth muscle cells were isolated from the circular layer of the gastric antrum. Briefly, guinea pigs were exsanguinated after being stunned. The antral part of the stomach was cut and the mucosal layer was separated from the muscle layers in Ca²⁺-free physiological salt solution (Ca²⁺-free

1) Project supported by the National Natural Science Foundation of China, No 39660206.
2) Correspondence to Prof. Li Zai-Liu.
Phn 86-433-266-0530, Fax 86-433-266-9796.
E-mail wenxie2000@ybx.edu.cn
Received 1999-02-24 Accepted 1999-12-17
PSS). The circular muscle layer was dissected from the longitudinal layer using fine scissors and cut into small segments (1 x 5 mm). These segments were kept in a modified Kraft-Bruhe (K-B) medium at 4 °C for 5 min. Then they were incubated at 36 °C in 4 mL digestion medium (Ca^{2+}-free PSS) containing 0.1 % collagenase (type 1), 0.05 % dithioerythritol, 0.05 % trypsin inhibitor, and 0.2 % bovine serum albumin for 25 - 35 min. After digestion in a shaking water bath, the softened muscle segments were transferred into the modified K-B medium, and single cells were dispersed by gentle trituration with a wide-bore fire-polished glass pipette. Isolated gastric myocytes were kept in the modified K-B medium at 4 °C up to 10 h.

Electrophysiologic recording Isolated cells were transferred to a small chamber (0.1 mL) on the stage of an inverted microscope (IX-70 Olympus, Japan) for 10 - 15 min to settle down, and then continuously superfused with isosmotic physiological salt solution (PSS) by gravity (0.9 - 1.0 mL·min⁻¹). An 8-channel perfusion system (L/M-sps-8, List Electronics, Germany) was used to change the solution. Experiments were performed at room temperature (20 - 25 °C) using the whole-cell configuration of the patch-clamp technique. Patch-clamp pipettes were manufactured from borosilicate glass capillaries (GC150T-7.5, Clark Electromedical Instruments, UK) using a two-stage puller (PP-83, Narishige, Japan). The resistance of the patch pipette was 3 - 5 MΩ when filled with pipette solution. Solutions were passed through a filter of pore size of 0.2 μm before use. Liquid junction potentials were canceled prior to seal formation. Whole-cell currents were recorded with an Axopatch 1-D patch-clamp amplifier (Axon Instrument, USA) and command pulses were applied by using an IBM-compatible 486-grade computer and pClAMP software (Version 6.02). Perforated patch recording was used in some cells.

Solutions and chemicals Tyrode’s solution contained (mmol·L⁻¹) NaCl 147, KCl 4, MgCl₂·6H₂O 1.05, CaCl₂·2H₂O 2, NaH₂PO₄·2H₂O 0.42, Na₂HPO₄·2H₂O 1.81, glucose 5.5, and its pH was adjusted to 7.35 with NaOH. PSS contained (mmol·L⁻¹) NaCl 134.8, KCl 4.5, CaCl₂ 2.0, glucose 5, HEPES 10 and its pH was adjusted to 7.4 with Tris (hydroxymethyl) aminomethane (TRIZMA). In Ca^{2+}-free PSS; CaCl₂ 2.0 mmol·L⁻¹ was omitted from PSS. Modified K-B solution contained (mmol·L⁻¹) L-glutamate 50, KCl 50, taurine 20, KH₂PO₄ 20, MgCl₂ 3, glucose 10, HEPES 10, and egzetic acid 0.5 and its pH was adjusted to 7.4 with KOH. Pipette solution contained (mmol·L⁻¹) potassium-aspartic acid 110, Mg₂-ATP 5, HEPES 5, MgCl₂ 1, KCl 20, egzetic acid 0.1 or 10, di-tris-creatin phosphate 2.5, disodium-creatin phosphate 2.5 and its pH was adjusted to 7.3 with KOH.

SNP (Nakarai Chemicals, Ltd, No 316-20, Tokyo, Japan), SIN-1, and spermine were dissolved prior to experiment. Methylene blue was purchased from Shenyang No 3 Chemical Reagent Plant (lot No 860501). Other reagents were purchased from Sigma (USA). TEA was made up as an aqueous stock solution (1 mol·L⁻¹). Nystatin was dissolved in pure Me₂SO and kept at 0 °C. All other stock solutions were kept at 4 °C and diluted in PSS before experiment.

Statistical analysis Results were expressed as x ± s, and statistical significance was tested by paired t-test unless stated otherwise.

RESULTS

Pharmacology of outward K⁺ current of GACSMC Membrane potential was clamped at -60 mV using conventional whole-cell patch-clamp method, and Iₖ(Ca) was elicited by step voltage command pulse from -40 mV to +100 mV for 400 ms with a 20-mV increment, at 10-s intervals. The Iₖ(Ca) was recorded at 5 min after rupture. We monitored the capacitance current of the cell while taking samples. Once the capacitance current of a cell changed, the data of the cell were discarded. There was no significant change in the current amplitude in 40 min without treatment (data not shown). The mean amplitude of Iₖ(Ca) was 1.7 nA ± 1.0 nA at 60 mV (n = 50). Outward currents were markedly blocked by TEA, a sensitive Iₖ(Ca) blocker, under the conditions of high and low concentration of egzetic acid in pipette solutions (10 mmol·L⁻¹, Fig 1 A and 0.1 mmol·L⁻¹, Fig LB). Charybdoxin 200 mmol·L⁻¹, a specific Kₐ channel blocker, inhibited Iₖ(Ca) by 79% ± 16% (at 60 mV, P < 0.01, Fig 1C). Delayed-rectifier potassium current (Iᵥₖ) was elicited by the step voltage command pulse with CdCl₂ 1 mmol·L⁻¹ in PSS and egzetic acid 10 mmol·L⁻¹ in pipette solution. At 60 mV and 80 mV, the Iᵥₖ was more markedly inhibited by TEA than Iₖ(Ca) (Fig 2).

Effect of SNP on Iₖ(Ca) of GACSMC using conventional whole-cell recording In the conventional whole-cell recording configuration, SNP 100
Fig 1. Effects of TEA and ChTX on outward K+ current of GACSMC in guinea pig. *P < 0.05, **P < 0.01 vs control.

\(\mu \text{mol} \cdot \text{L}^{-1} (n = 7) \) had no detectable effect on \(I_{K(Ca)} \) in GACSMC at each voltage employed \((P > 0.05, \text{data not shown}) \).

Effect of SNP, SIN-1, and spermine on \(I_{K(Ca)} \) of GACSMC using perforated whole cell recording SNP (100 \(\mu \text{mol} \cdot \text{L}^{-1} \)) increased the amplitude of the \(I_{K(Ca)} \) by 23 \% \pm 13 \% at 60 mV (Fig 3A). As an inhibitor of soluble guanylate cyclase, methylene blue (1 \(\mu \text{mol} \cdot \text{L}^{-1} \)) itself did not change the amplitude of \(I_{K(Ca)} \) of GACSMC in the guinea pig \((n = 13, P > 0.05, \text{data not shown}) \). After addition of methylene blue 1 \(\mu \text{mol} \cdot \text{L}^{-1} \) for 5 min, \(I_{K(Ca)} \) was no longer increased by SNP 100 \(\mu \text{mol} \cdot \text{L}^{-1} \) \((P > 0.05, \text{Fig 3B}) \). SIN-1 200 \(\mu \text{mol} \cdot \text{L}^{-1} \), another nitric oxide donor, had
effect similar to SNP on $I_{K(Ca)}$ with an increase by $19 \% \pm 14 \%$ at 60 mV (Fig 4A). SIN-1-induced $I_{K(Ca)}$ increase was also blocked by methylene blue (1 μmol·L$^{-1}$, Fig 4B). Spermine (100 μmol·L$^{-1}$) increased the magnitude of the $I_{K(Ca)}$ by $14 \% \pm 10 \%$ at 60 mV (Fig 5).

DISCUSSION

The main observation of this investigation was that three NO donors, SNP, SIN-1, and spermine, increased $I_{K(Ca)}$ in the perforated patch-clamp recording configuration but not in the conventional whole cell recording configuration. The effects of SNP and SIN-1 on $I_{K(Ca)}$ were completely blocked by methylene blue, an inhibitor of soluble guanylate cyclase.

There are 3 known types of potassium channels on smooth muscle cells: calcium-activated potassium channel (K_{Ca}), delayed-rectifier potassium channel (K_{D}) and transient outward potassium channel (K_{ov}). In the present study, TEA-sensitive and ChTX-sensitive large conductance Ca$^{2+}$-activated K$^+$ currents ($I_{K(Ca)}$) were a significant fraction of the outward current recorded with low external acid in the pipette solution. A significant fraction of the outward current observed in the present study was TEA- and Ca$^{2+}$-sensitive. In our experimental conditions, we did not observe $I_{K(D)}$. However, Duridanova et al.[8] found a transient outward potassium current ($I_{K(D)}$) with voltage-dependent characteristic in GACSMC of the guinea pig. There is a difference in the pharmacology between GACSMC in the guinea pig and smooth muscle cells of the rabbit basilar artery.[7]

It is well known that NO inhibits motilities as nonadrenergic noncholinergic (NANC) neurotransmitters of the rat stomach[1] and dog proximal colon[10]. Our previous studies have shown that exogenous NO imitates the inhibitory effects of NANC nerve on the gastric antral muscle motility in the rat[4]. Recent studies suggest that NO is released during NANC nerve stimulation, and mediates relaxation via a hyperpolarizing mechanism[9]. The channels responsible for NO-dependent membrane hyperpolarization and inhibition of gastric antral muscle
motility have not yet been identified. A number of reports show that NO-induced membrane hyperpolarization might be mediated by \(K_{Cx} \) channel, by a-amino-sensitive \(K^+ \) channel, or by two other types of \(K^+ \) channels (\(K_{NOX, 1} \), \(K_{NOX, 2} \)). However, Zhang et al. suggest that NO-mediated hyperpolarization might be produced by suppression of calcium-dependent Cl\(^-\) conductance. In the present experiment, NO donors increased \(I_{K(Ca)} \) which was sensitive to TEA and charybdoxin in GACSMC of the guinea pig using the perforated whole cell recording mode. It is most likely that NO relaxes gastric antral smooth muscle of the guinea pig through increase of \(I_{K(Ca)} \).

NO relaxes smooth muscle cells by stimulation of guanylate cyclase and activation of \(K^+ \) channels through cyclic GMP-dependent protein kinase. In single smooth muscle cells of the guinea pig stomach fundus, NO-liberating substances and cyclic GMP analogues induced an increase in \(Ca^{2+} \)-sensitive \(K^+ \) conductivi-

Fig. 3. Effect of SNP on \(I_{K(Ca)} \) of GACSMC in guinea pig pretreated by MB. \(^{p} P > 0.05, ^{a} P < 0.05, ^{b} P < 0.01 \) vs control (A) and MB (B), respectively.

Fig. 4. Effect of SIN-1 on \(I_{K(Ca)} \) of GACSMC in guinea pig in the presence of MB. \(^{p} P > 0.05, ^{a} P < 0.05, ^{b} P < 0.01 \) vs control (A) and MB (B), respectively.

Fig. 5. Effects of spermine on \(I_{K(Ca)} \) of GACSMC in guinea pig. \(^{p} P > 0.05, ^{a} P < 0.05, ^{b} P < 0.01 \) vs control.
first time that nitric oxide increases $I_{K(Ca)}$ of gastric myocytes under perforated but not conventional whole cell recording. In the conventional whole cell recording mode, SNP did not increase $I_{K(Ca)}$ even up to 1 mmol·L$^{-1}$(data not shown). So it did not bring a direct effect on the K$_{Ca}$ channels, as was seen in rabbit aortic cells14. During whole-cell recording, an important cell function disappears as a result of the loss of unknown diffusible factors into the recording pipette (washout)15. However, the perforated patch technique aims at retaining the cytosolic constituents. In conventional whole cell recording mode, guanylate cyclase may be diluted by pipette solution so that SNP-induced increase in $I_{K(Ca)}$ could not be seen. We found that the NO-induced increase in $I_{K(Ca)}$ was completely blocked by MB, an inhibitor of soluble guanylate cyclase. The results also suggest that SNP-induced increase in $I_{K(Ca)}$ is mediated by cyclic GMP. The difference between the guinea pig gastric and the rabbit aortic artery smooth muscle might be due to species and cell type differences.

In conclusion, these data indicate that nitric oxide increase calcium-activated potassium current of gastric antral circular myocytes of the guinea pigs. The effect by NO appears to be mediated via cyclic GMP-dependent mechanisms.

REFERENCES

13 Durandova DB, Gagov HS, Petkov GV, Shkodrov QB, Boev KK. Cyclic GMP-induced activation of potassium currents by sarcoplasmic reticulum Ca$^{2+}$-pump-dependent mechanism. Gen Physiol Biophys 1995; 14: 139-51.
