Arcuate nucleus of hypothalamus involved in analgesic action of l-THP

HU Jiang-Yuan2 JIN Guo-Zhang3

\textit{Shanghai Institute of Materia Medica} \textit{Chinese Academy of Sciences} \textit{Shanghai 200031} \textit{China}

KEY WORDS tetrahydropalmatine horseradish peroxidase arcuate nucleus PAG corpus striatum nucleus accumbens analgesia naloxone endorphins

ABSTRACT

AIM To study the role of the arcuate nucleus of hypothalamus in analgesic action of l-tetrahydropalmatine \textit{l-THP}. METHODS The horseradish peroxidase \textit{HRP} retrograde tracing \textit{HRP} retrograde tracing combined with immunohistochemistry lesion of nucleus tail-flick test and intra-PAG injection were used in the present study. RESULTS HRP retrograde tracing results showed that the striatum or accumbens nucleus connect with PAG by two pathways 1st striatum or accumbens nucleus \rightarrow arcuate nucleus \rightarrow PAG 2nd striatum or accumbens nucleus \rightarrow habenula \rightarrow PAG. It was found that neurons in the arcuate nucleus projecting to PAG were mainly \textit{\beta}-endorphin neurons as observed by HRP retrograde tracing combined with immuno-histochemistry. After lesion of the arcuate nucleus the analgesic action of \textit{l-THP} 40 mg kg-1 ip was abolished while lesion of the habenula had no such effect. Moreover intra-PAG injection of naloxone 2nd 3 \mu g-1 \textit{ip} could markedly attenuate the analgesic action of \textit{l-THP} 40 mg kg-1 \textit{ip} in a dose-dependent manner. CONCLUSION \textit{\beta}-Endorphin neurons in the arcuate nucleus play an important role in the analgesic action of \textit{l-THP}.

INTRODUCTION

\textit{l-Tetrahydropalmatine} \textit{l-THP} is the main active ingredient of the \textit{Corydalis ambigua} Cham et Sch3 or called \textit{Corydalis turshaininovii} Bess f Yanhusuo \textit{YH Chou et CC Hsu} a famous analgesic of Chinese traditional medicine which possesses an analgesic action associated with remarkable sedative and tranquilizing effect \textit{11,44}. \textit{l-THP}'s use as an analgesic or sedative has been listed in the Chinese Pharmacopoeia in the 1977 \textit{1985} \textit{1990} and 1995 editions. However the exact analgesic mechanism of \textit{l-THP} still remains unclear.

\begin{center}
\includegraphics[width=0.5\textwidth]{l-Tetrahydropalmatine.png}
\end{center}

\textit{l-Tetrahydropalmatine}

Previous studies in our laboratory have shown that \textit{l-THP} is a dopamine D\textsubscript{2} receptor antagonist \textit{D\textsubscript{2}} and it can enhance the activity of descending brainstem pain modulation system especially periaqueductal gray \textit{PAG} by blocking D\textsubscript{2} receptors in the striatum and accumbens nucleus and subsequently inhibiting the inputs of peripheral pain afferent message at the spinal cord level \textit{D\textsubscript{2}}. It is necessary to be clarified whether a direct descending neural pathway exists from the striatum or accumbens nucleus to the PAG or an indirect neural pathway which relays at other nuclei. The present study attempted to investigate the pathway from the striatum or accumbens nucleus to \textit{PAG} by observing the influences of destroying the nuclei in the pathway of the analgesic action of \textit{l-THP}. In addition naloxone \textit{\alpha} antagonist to \textit{\mu} \textit{\delta} \kappa opiodergic receptors was used to ascertain whether or not opioid peptides were involved in the analgesic action of \textit{l-THP}.

1 Supported by the National Natural Science Foundation of China No 39770653 and 39670829.
2 Now in \textit{Shanghai Institute of Physiology} \textit{Chinese Academy of Sciences} \textit{Shanghai 200031} \textit{China}.
3 Correspondence to Prof JIN Guo-Zhang.
Phn 86-21-6431-1833 ext 402. Fax 86-21-6437-0269.
E-mail gzjin@mail.shcen.ac.cn
Received 1999-09-10 Accepted 1999-12-30
MATERIAL AND METHODS

Materials Adult Sprague-Dawley rats (180 – 200 g) were supplied by Shanghai Animal Center Chinese Academy of Science\[\] Grade II Certificate No. 005. 1-THF mp 141 – 142 °C \[\] d\[\]L\[\] = 289° isolated by Shanghai Institute of Materia Medica\[\] was dissolved in \(H_2\)\(SO_4\) 0.1 mol \(L^{-1}\) and adjusted to pH 5.5 with \(NaOH\) 0.1 mol \(L^{-1}\). HRP and naloxone\[\] purchased from Research Biochemicals International Company\[\] USA\[\] were diluted with normal saline.

HRP retrograde tracing Rats were anesthetized with sodium pentobarbital 40 mg kg\(^{-1}\) \[\] then 0.5 \(\mu\)L of 30% HRP was injected into the PAG\[\] arcuate nucleus\[\] and habenula respectively using a glass micropipette with a tip diameter of 10 \(\mu\)m. The sites of injection were located in the PAG\[\] Bregma\[\] – 6.04 mm R\[\] 0.7 mm H\[\] 4.8 mm\[\] arcuate nucleus\[\] Bregma\[\] – 3.8 mm R\[\] 0.25 mm H\[\] 11.5 mm\[\] and habenula \[\] Bregma\[\] – 3.8 mm R\[\] 0.7 mm H\[\] 4.8 mm respectively according to the rat brain atlas of Paxinos and Watson\[\] 1997 edition\[\] Fig 1. After surviving for 40 h rats were anesthetized and then perfused intracardially for 25 min with 2 % paraformaldehyde and 0.25 % glutaraldehyde solution preceded by rapid saline flush. The brains were removed and postfixed in 20 % sucrose fixative for 12 h and sunk in 30 % sucrose overnight at 4 °C. The brains were cut into 30 \(\mu\)m thick transverse sections with a cryostat. HRP reaction product in the brain sections were stained according to the tetramethyl benzidine-sodium tungstate\[\] TMB-ST procedure\[\].

Immunohistochemistry HRP-labeled brain sections were pre-incubated in 10 % normal goat serum for 1 h\[\] and incubated for 48 h at 4 °C in \(\beta\)-endorphin antibody at a dilution of 1:1000 in 0.01 mol \(L^{-1}\) phosphate buffer\[\] pH 7.4 with 1 % normal goat serum and 0.3 % triton X-100. Sections were washed with 0.01 mol \(L^{-1}\) phosphate buffer saline\[\] PBS\[\] and incubated for 1 h at 37 °C in biotinylated goat anti-rabbit immunoglobulin G solution\[\] 1:200. Sections were washed with PBS and incubated for 1 h at 37 °C in avidin-biotin-peroxidase complex solution\[\] 1:200. After three washes with PBS the sections were then washed with Tris-HCl buffer\[\] pH 7.4. The immune product was stained following glucose oxidase-diaminobenzidine-nickel\[\] GDN procedure\[\] then brain sections were mounted dehydrated\[\] and coverslipped with neutral balsam.

Lesion of nucleus After rat was anesthetized with sodium pentobarbital 40 mg kg\(^{-1}\) \[\] an insulated stainless steel electrode was inserted into the arcuate nucleus or habenula the sites of electrolytic lesion were the same as the sites of HRP injection\[\] with its tip extending 0.5 mm beyond the insulation. The arcuate nucleus or habenula was bilaterally destroyed by passing an anodal current of 5 mA for 20 s. Experiments were performed one week after lesion. At the end\[\] the extent of brain tissue lesion was carefully checked by crysyl violet stain.

Fig 1. Sites of HRP injected in habenula\[\] Bregma\[\] – 3.8 mm L 0.7 mm H 4.8 mm\[\] arcuate nucleus \[\] Bregma\[\] – 3.8 mm L 0.25 mm H 11.5 mm\[\] and PAG\[\] Bregma\[\] – 6.04 mm L 0.5 mm H 5.8 mm\[\]. Ha\[\] habenula\[\] Ar\[\] arcuate nucleus.

Tail flick test The pain threshold was assessed using tail-flick test. The latency for a rat to flick its tail away from a source of radiant heat was measured with Tail Flick Timer 1. ITC Inc USA through applying noxious radiant heat to stimulate the blackened undersurface of middle third portion of the tail. Tail-flick latency\[\] TFL\[\] was recorded by the digital timer. The baseline latency\[\] BL\[\] in each rat was kept from 3.0 s to 5.0 s. A BL was established by three trials at 5-min intervals. The TFL of trials at 10-min intervals was measured after
drugs injection.

Intra-PAG injection For implantation of intracranial cannulae the rat was mounted on a stereotaxic instrument under pentobarbital anesthesia [40 mg kg⁻¹] ip. Stainless steel guide cannulae of 0.3 mm outer diameter were directed to PAG [Bregma −6.04 mm; R 0.5 mm; H 5.8 mm]. The cannulae were fixed to the skull with dental acrylic. One week was allowed for surgical recovery. Bilateral injection into PAG was performed through a stainless injection tube of 0.25 mm outer diameter which was inserted into the guide cannulae with the former extending 0.1 mm beyond the tip of the latter. Naloxone solution [5 μL] was gradually injected into PAG via a slow injection apparatus over a period of 5 min followed by NS 5 μL to flush the stainless injection tube.

Statistical analysis HRP-labeled, β-endorphin-labeled, and β-endorphin-double labeled neurons were counted under light microscopy × 100. TFL was converted into % of the maximal possible effect. The % change of TFL was calculated according to the formula: % C = [TFL - TBF] / TBF × 100 %. Data [x ± s] were analyzed by ANOVA followed by Bonferroni t-test.

RESULTS

HRP retrograde tracing After injecting HRP into PAG HRP-labeled neurons were observed as green granules in the arcuate nucleus and habenula by TMB-ST stain [Tab 1 Fig 2] but not in the striatum and accumbens nucleus. The result indicates that the striatum or accumbens nucleus do not directly connect with PAG and that neurons projecting to PAG exist in arcuate nucleus or habenula. Moreover HRP-labeled neurons could be observed in the striatum and accumbens nucleus by the arcuate nucleus or habenula HRP retrograde tracing [Tab 2]. This result indicates that there are direct nerve fiber connection between the striatum or accumbens nucleus and the arcuate nucleus or habenula but there is no direct pathway from the striatum or accumbens nucleus to PAG. The arcuate nucleus or habenula may be presumed a relay station.

HRP retrograde tracing combined with immunohistochemistry By combining HRP retrograde tracing with immunohistochemistry technique three kinds of labeled neurons were observed in the arcuate nucleus [1] green HRP-labeled neurons by TMB-ST stain [2] gray β-endorphin-immunoreactivity neurons by GDN stain [3] dark brown HRP and β-endorphin double-labeled neurons which constituted 78.5 % of the HRP-labeled neurons [Tab 1 Fig 2]. However only one kind of HRP-labeled neurons without double-labeled or β-endorphin neurons were observed in the striatum accumbens nu-

![Fig 2](image_url) Light micrograph showing HRP-labeled neurons in the arcuate nucleus by PAG HRP retrograde tracing and staining with TMB-ST A the double-labeled neurons of HRP and β-endorphin in the arcuate nucleus B. Bar = 40 μm.

Tab 2. Number of HRP-labelled neurons in the striatum and accumbens nucleus by Ar or Ha HRP retrograde tracing. n = 4.

<table>
<thead>
<tr>
<th>Brain area</th>
<th>Ar HRP tracing</th>
<th>Ha HRP tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striatum</td>
<td>36.5 ± 5.9</td>
<td>19.6 ± 4.7</td>
</tr>
<tr>
<td>Accumbens nucleus</td>
<td>22.3 ± 6.1</td>
<td>14.9 ± 6.4</td>
</tr>
</tbody>
</table>

Tab 1. Number of three kinds of labelled neurons in the arcuate nucleus Ar and habenula Ha by PAG HRP retrograde tracing. n = 4.

<table>
<thead>
<tr>
<th>Brain area</th>
<th>HRP-labelled neurons</th>
<th>Endorphin-labelled neurons</th>
<th>Neurons double-labelled by HRP and endorphin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>16.3 ± 2.6</td>
<td>23.3 ± 2.8</td>
<td>12.8 ± 0.8</td>
</tr>
<tr>
<td>Ha</td>
<td>6.3 ± 2.2</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
nucleus or habenula. This suggests that most of neurons in the arcuate nucleus projecting to PAG are β-endorphin neurons.

Influences of lesion of the arcuate nucleus or habenula on the analgesic action of l-THP
Ten min after its administration l-THP 40 mg kg⁻¹ ip could markedly increase the pain threshold of rats and the analgesic action lasted beyond 3 h. However, the analgesic action of l-THP 40 mg kg⁻¹ ip was lost after lesion of the arcuate nucleus P < 0.01 whereas lesion of the habenula had no influence on the analgesic action of l-THP Fig 3[]. The results suggest that the arcuate nucleus plays an important role in the analgesic action of l-THP and the habenula is not involved.

Fig 3. Effect of lesioned arcuate nucleus or lesioned habenula on the percentage changes of TFL induced by l-THP 40 mg kg⁻¹ ip. Ar lesion could attenuate the increase of TFL induced by l-THP while Ha lesion had no effect. n = 6. x ± s. *P < 0.01 vs l-THP.

Effect of intra-PAG injection of naloxone on the analgesic action of l-THP
Twenty min after administration l-THP 40 mg kg⁻¹ ip rats were injected naloxone 1 μg 2 μg 3 μg or NS into PAG bilaterally. Ten min after injecting l-THP there was an increase in the pain threshold in the l-THP group. The pain threshold went on increasing in rats receiving intra-PAG injection of 1 μg naloxone or NS which showing no significant differences with the l-THP group. When rats received intra-PAG injection of 2 μg or 3 μg naloxone there was a dose-related attenuation of the analgesic action of l-THP P < 0.01 Fig 4[]. The results suggest that β-endorphin neurons in the arcuate nucleus are involved in the analgesic action of l-THP.

DISCUSSION

Our previous works have shown that after blocking D₂ receptors in the striatum and accumbens nucleus l-THP can enhance the activity of descending brainstem pain modulation system especially PAG and subsequently inhibit the inputs of afferent peripheral pain message at the spinal cord level[]. This suggests the existence of a descending pain modulatory pathway from the striatum or accumbens nucleus to PAG subserving the analgesic action of l-THP. Since previous morphological studies with HRP retrograde tracing did not show any evidence of direct fiber connection from the striatum or accumbens nucleus to PAG so a neural relay is highly suggested. In the present study it was revealed by the HRP retrograde tracing that the striatum or accumbens nucleus sent nerve fibers to the arcuate nucleus or habenula where the neurons projected to PAG. In other words it is certain that the striatum or accumbens nucleus could connect indirectly with PAG via the arcuate nucleus or habenula. It is also considered that there are two neural pathways from the striatum or accumbens nucleus to PAG one led from striatum or accumbens nucleus → arcuate nucleus → PAG another from striatum or accumbens nucleus → habenula → PAG. Previous reports inferred that the arcuate nucleus or habenula may be a neural relay in the descending pain modulatory pathway from the striatum or accumbens nucleus to PAG[]. The arcuate nucleus or habenula has been regarded as the major link between forebrain structures and midbrain nuclei[]. Our morphological results provide the evi-
idence to support this hypothesis.

The present study attempts to evaluate which neural pathway[] from the striatum or accumbens nucleus to PAG[] plays a relatively important role in the analgesic action of l-THP. If the pathway is indispensable[] it would be expected that the analgesic action of l-THP be substantially attenuated or decreased after lesioning of arcuate nucleus or habenula. Our results showed that the analgesic action of l-THP was abolished after lesion of the arcuate nucleus while lesion of the habenula had no effect on the analgesic action. The results suggest clearly that the following pathway[] striatum or accumbens nucleus → arcuate nucleus → PAG[] plays an important role in the analgesic action of l-THP while the pathway via habenula to PAG is not involved in the analgesic action of l-THP. There are other reports which show that the above mentioned two pathways are all involved in the analgesic action induced by intra-accumbens nucleus injection of morphine[] while electrostimulation of accumbens nucleus mainly elicited the analgesic effect via the accumbens nucleus → habenula → PAG pathway[]. Thus[] most researchers agree to the viewpoint that the analgesic action elicited by the forebrain[] the striatum or accumbens nucleus[] is finally exerted by PAG[].

In the present study[] another observation suggests that β-endorphin neurons in the arcuate nucleus are involved in the descending pain modulatory pathway leading from the striatum or accumbens nucleus to PAG[]. This conclusion was based mainly on the following findings[] 1[] most of the neurons in the arcuate nucleus projecting to PAG were β-endorphin neurons as observed by HRP retrograde tracing combined with immunohistochemistry[]. 2[] the analgesic action of l-THP could be attenuated by intra-PAG injection of naloxone. Therefore[] β-endorphin neurons in the arcuate nucleus play an important role in the analgesic action of l-THP.

REFERENCES

14 Wang RY[], Aghajanian GK. Physiological evidence for habenula as a major link between forebrain and midbrain raphe. Science 1976; 197; 89 – 91.

下丘脑弓状核参与左旋四氢巴马汀的镇痛作用

胡江元, 金国章

(中国科学院上海药物研究所, 上海)

关键词 四氢巴马汀; 辣根过氧化物酶; 弓状核; 纹状体; 伏膈核; 镇痛; 纳洛酮; 内啡肽

目的: 研究弓状核在左旋四氢巴马汀(THP)镇痛效应中的作用, 以阐明THP的镇痛作用机制。

方法: 应用辣根过氧化物酶(HRP)逆行追踪术追踪纹状体或伏膈核与弓状核之间的纤维联系, 逆行追踪结合免疫组化观察投射神经元的性质, 神经核团损毁和核内注射药物观察对THP镇痛作用的影响。

结果: 纹状体或伏膈核通过弓状核或缰核间接与弓状核联系, 弓状核投射至纹状体的神经元大部分是内啡肽神经元。损毁弓状核后, THP的镇痛作用消失, 而损毁缰核对THP的镇痛作用无明显影响。核内注射纳洛酮能剂量依赖性翻转THP的镇痛作用。

结论: 弓状核的内啡肽神经元在THP镇痛作用中起重要作用。

2000年国家执业医师资格考试辅导书目

为有效地贯彻实施《中华人民共和国执业医师法》, 卫生部决定于每年下半年组织执业医师资格考试。此套丛书以执业医师资格考试大纲为指导, 以卫生部规划教材为基础, 由北京协和医科大学、北京医科大学、首都医科大学、湖南医科大学等医药院校具有丰富教学经验和命题经验的专家教授精心编纂, 使应试者在有限的复习时间内, 有的放矢, 抓住重点, 熟悉教材中的大部分知识。配套的强化试题都是从各高等医药院校积累多年的有关学科的题库中, 以考纲为依据, 以标准化试题为样本精选出来, 对应试考生顺利通过执业医师资格考试将有很大帮助。《国家执业医师资格考试应试指导及强化训练》

- 生理学
- 生物化学
- 病理学
- 药理学
- 内科学
- 外科学
- 妇产科学
- 儿科学
- 卫生学、卫生法学
- 微生物学、免疫学
- 医学心理学、医学伦理学
- 口腔解剖生理学、口腔组织病理学
- 口腔内科、口腔外科
- 口腔修复学、口腔预防医学
- 妇女保健学、儿童保健学
- 流行病学、卫生统计学
- 劳动卫生学、营养卫生学
- 环境卫生学、卫生毒理学
- 社会医学、健康教育学
- 中国药理学报

《国家执业医师资格考试应试习题精粹》

- 基础医学综合分册
- 临床医学专业课分册
- 公共卫生专业课分册
- 口腔医学专业课分册
- 公共科目分册

以上各系列书将在四月-六月由人民军医出版社陆续出版, 如要订购, 请先汇款预订。我们根据汇款先后顺序分批邮寄(出版一本, 邮寄一本), 订书金额超过500元实行九五折优惠, 超过1000元实行九折优惠, 超过2000元实行八五折优惠, 且一律免收邮资; 如大量订购或者各书店征订, 可来函来电联系优惠条件。联系电话: (010)6232-1782, 6263-3491, 汇款地址: 北京市海淀区巴沟南路23号北楼中国华侨出版社经营部李建军 收。