Effect of nitric oxide on electric and mechanical activities of gastric antral circular muscles in guinea pigs

JIN Jing-Yu, LI Zhe-Hao, LI Zhen-Ji, JIN Zheng-Yuan, JIN Nan-Ge, LI Ying, XU Wen-Xie, LI Zai-Liu
(Research Laboratory of Digestive Physiology, College of Medicine, Yanbian University; 2Department of General Surgery, Affiliated Hospital of Yanbian University College of Medicine; 3Department of Internal Medicine, Yanji Institute and Anus Hospital, Yanji 133000, China)

KEY WORDS nitric oxide; nitroprusside; electromyography; gastrointestinal motility

ABSTRACT

AIM: To study the effect of exogenous nitric oxide (NO) on electric and mechanical activities of gastric antral circular muscle in guinea pigs in vitro. METHODS: Mechanical and electric activities of gastric antral circular muscle in guinea pigs were recorded simultaneously. RESULTS: Sodium nitroprusside (SNP, 0.5 μmol·L⁻¹), an NO donor, inhibited the frequency and amplitude of fast wave and spontaneous contraction of the strips (P < 0.01). SNP-induced inhibition was not blocked by tetrodotoxin, atropine, phentolamine, and propranolol (P > 0.05), but diminished by methylene blue (P < 0.01) and oxyhemoglobin (P < 0.01). CONCLUSION: Exogenous NO inhibits gastric antral myoelectric and mechanical activities in guinea pigs. The inhibitions are produced by NO acting on extracellular membrane and enhancing the level of cGMP.

MATERIALS AND METHODS

EWG/B guinea pigs of either sex, bred by Experimental Animal Center, Norman Bethune University, Certificate No 10-6004, weighing (300 ± 50) g, were stunned and bled. The abdomen of each guinea pig was opened along the midline and stomach was removed and placed in pre-oxygenated Tyrode’s solution at room temperature. The mucous layer was removed and strips (about 2.0 mm × 20.0 mm) of gastric antral circular muscle were prepared. The longer axis of the stomach was cut parallel to the circular muscle fibres. Muscle strips were placed in a chamber and pinned in silica gel floor. One end of the strip was pinned to the floor of the chamber to record extra cellular electric activity with an Ag-AgCl electrode. The other end was attached to an isometric force transducer (CJY100, Beijing, China) to record contraction. The chamber (8 mL volume) was constantly perfused with pre-oxygenated Tyrode’s solution at 3 mL/min. Temperature was maintained at (37.0 ± 0.5 °C by a water bath thermostat (WC/09-05, Chongqing, China). The Ag-AgCl electrode and isometric force transducer were connected to a polygraph (RM6200, Nihon Kohden, Tokyo, Japan). The muscle strips were allowed to incubate for at least 2 h before experiments were started.

The Tyrode’s solution used in this study contained (mmol·L⁻¹) NaCl 147, KCl 4, MgCl₂ 1, CaCl₂ 2, NaH₂PO₄ 0.42, Na₂HPO₄ 1.81, glucose 5.5, the pH was 7.36 ± 0.01.
Drugs Sodium nitroprusside (Nakarai Chemical, Ltd, Tokyo, Japan), atropine, phenotolamine, and propranolol (Beijing Chemical Reagent Plant, China), methylene blue (Shenyang, No 3 Chemical Reagent Plant, China), tetrodotoxin and oxyhemoglobin (Sigma Chemical Co, USA).

Statistics Results were expressed as x ± s. Significance was tested by t-test and values of P < 0.05 were considered significant.

RESULTS

Effect of SNP on electric and mechanical activities of gastric antral circular muscle The spontaneous contraction and fast wave usually appeared after incubating the muscle strips in Tyrode’s solution for about 2 h. SNP (0.5 μmol·L⁻¹, n = 5) markedly decreased the frequency and amplitude of fast waves and completely inhibited the contractile responses. The amplitude of slow waves was slightly diminished while the frequency was not affected by SNP (Fig 1A). These SNP-induced inhibitions returned progressively to control level after washing out.

Effects of tetrodotoxin (TTX) and receptor blockers on the SNP-induced inhibition To determine the relationship between SNP-induced inhibition and NANC inhibitory nerve in Auerbach’s plexus, we observed the effects of TTX, adrenergic and cholinergic receptor blockers on the SNP-induced inhibition, respectively. TTX (1 μmol·L⁻¹, n = 4) slightly increased basic tone, but did not affect electric activity and phasic contraction of the muscle strips. The SNP-induced inhibitions of gastric antral circular muscle were not affected by pretreatment with TTX (Tab 1), atropine (1 μmol·L⁻¹, n = 6) (Fig 1B, Tab 1), phenotolamine (1 μmol·L⁻¹, n = 5) (Tab 1) and propranolol (1 μmol·L⁻¹, n = 4) (Tab 1).

Effects of oxyhemoglobin and methylene blue on the SNP-induced inhibition To further analyze the mechanism by which NO inhibits the gastric electric and mechanical activities, we tested the action of oxyhemoglobin (Oxy-Hb), an extra cellular NO scavenger, and methylene blue (MB) which inhibits soluble guanylate cyclase, on the SNP-induced inhibitions. Oxy-Hb (5 μmol·L⁻¹, n = 4), markedly diminished the inhibitory effect of SNP on fast wave and motility of the strips (Tab 1). MB (5 μmol·L⁻¹, n = 7) also significantly diminished the inhibitory effect of SNP on fast wave and motility (Fig 1C, Tab 1), but could not completely abolish the inhibitory effect. We also observed that higher concentration of MB (10 μmol·L⁻¹) did not completely block SNP-induced inhibitions (data unshown).

Fig 1. Effects of different drugs on electric and mechanical activities. A: SNP (0.5 μmol·L⁻¹, n = 5) inhibits electric and mechanical activities. B: SNP-induced inhibition was not affected by atropine (1 μmol·L⁻¹, n = 6). C: Methylene blue (5 μmol·L⁻¹) markedly diminished SNP-induced inhibition (n = 7).

DISCUSSION

The present data shows that SNP inhibits spontaneous
electric and mechanical activities of antral circular muscle in the guinea pig stomach. Our results demonstrate that the response of gastric antral smooth muscle to SNP is the same as that of other smooth muscles of the gastrointestinal tract, for example, jejunum and colon (3–7).

The mechanism by which SNP inhibits electric and mechanical activities of gastric antral circular muscle still remains to be elucidated. SNP is an established and commonly used NO-donor (3–8). Therefore, it can be considered that the SNP-induced inhibition appears to be due to NO released from SNP. The mechanism by which NO inhibits smooth muscle motility is not fully clear. According to the experimental conditions, we can presume two possible routes for the exogenous NO action: nervous and direct routes. A number of studies have shown that some of the nerves distributed in the stomach are NANC inhibitory nerve, but the identification of the NANC inhibitory neurotransmitter remains unclear. Recent studies have strongly suggested that NO is an NANC inhibitory neurotransmitter (7–9). In the present experiment, SNP may stimulate intermediary neuron releasing another NANC inhibitory transmitter in Auerbach’s plexus, example VIP, ATP, and so on, to inhibit target smooth muscle cells. However, the present results show that SNP-induced inhibitions were not affected by TTX and receptor blockers. There is thus little possibility of nervous route to be involved. Another possible route is that NO directly acts on the smooth muscle. Oxy-Hb, an NO scavenger, markedly diminished the SNP-induced inhibition. Oxy-Hb acts only at the extracellular sites, because it is a big molecule impermeable to cell membrane. There is evidence that exogenous NO may directly act on calcium-dependent potassium channels (11). No may also be having an intracellular action via cGMP pathway. NO has been shown to activate guanylate cyclase and enhance production of cGMP (10). The results indicate that methylene blue, which inhibits soluble guanylate cyclase, obviously diminished SNP-induced inhibitions. Therefore, we may suggest that SNP-induced inhibition appears partially through enhancing cGMP.

In summary, the present study shows that exogenous NO inhibits electric and mechanical activities of the gastric antral circular muscle in the guinea pigs. The effects are produced by NO action on the extracellular membrane and by enhancing intracellular cGMP.

REFERENCES

一氧化氮对豚鼠胃窦环行肌电活动和收缩运动的影响

金景玉，李哲浩，李贞姬，金正元，金南革，李英，许文燮，李在琉

POSTDOCTORAL POSITIONS
Sino-American Collaborative Research
Zhongshan Ophthalmic Center
Sun Yat-sen University of Medical Sciences

Zhongshan Ophthalmic Center (ZOC) is the top institution in China and one of the 20 tops worldwide for clinical treatment and basic research of ocular diseases. Positions are available to investigate ocular pharmacology. Focus is on therapeutic approach to retinal/macular degeneration, infection/inflammation, myopia and glaucoma. Two year commitment will be carried out at ZOC in Guangzhou and at Harvard in Boston. Successful candidates will be self-motivated with strong experience in molecular pharmacology. Experience in ophthalmology is helpful, but not essential. Send CV, a statement of research accomplishments, goals, and names of three references to: Prof Mark S Ho, MD, PhD, Zhongshan Ophthalmic Center, 54 S Xianlie Road, Guangzhou 510060, P.R. China. Fax: +86-20-87333271. E-mail markhu@gzsums.edu.cn