Effects of norepinephrine, epinephrine, and norepinephrine-dobutamine on systemic and gastric mucosal oxygenation in septic shock

Zhou Shao-Xia, Qiu Hai-Bo1, Huang Ying-Zi, Yang Yi, Zheng Rui-Qiang (Department of Critical Care Medicine, Zhong-Da Hospital and School of Clinical Medicine, Southeast University, Nanjing 210009, China)

KEY WORDS: septic shock; dopamine; norepinephrine; epinephrine; dobutamine; hemodynamics

ABSTRACT

AIM: To compare the effects of dopamine, norepinephrine, epinephrine, and the combination of norepinephrine and dobutamine on systemic and gastric mucosal oxygen metabolism in patients with septic shock.

METHODS: Sixteen patients with septic shock were enrolled in the present study. Each patient received dopamine firstly, then in a random succession epinephrine, norepinephrine, or norepinephrine-dobutamine, a mean systemic arterial pressure adjusted to > 9.31 kPa. After 120 min of each treatment, hemodynamic, oxygen metabolic, and gastric mucosal parameters were obtained.

RESULTS: Epinephrine induced a significant increase in heart rate compared with other three groups (P < 0.05), and a significant higher cardiac index compared with norepinephrine alone and norepinephrine-dobutamine (P < 0.05). Oxygen extraction ratio values were lower with epinephrine infusion as compared with other three groups (P < 0.05). Arterial lactate concentrations decreased significantly with norepinephrine-dobutamine as compared with dopamine and epinephrine infusions (P < 0.05). As compared with epinephrine infusion, the gastric intramucosal pH values were higher with norepinephrine-dobutamine infusion (7.25 ± 0.09 vs 7.14 ± 0.07, P < 0.05).

CONCLUSION: Dopamine, norepinephrine, epinephrine, or norepinephrine-dobutamine improved blood pressure. Epinephrine and dopamine had deleterious effect on oxygen metabolism, while norepinephrine plus low dose of dobutamine improved gastric mucosal perfusion and tissue oxygen utilization.

INTRODUCTION

Administration of vasoactive agents to elevate systemic perfusion pressure is a widely accepted treatment of septic shock. Although these agents, such as dopamine, norepinephrine, and epinephrine, have been shown to improve systemic hemodynamics, their effects on regional perfusion are not well defined. Patients with septic shock often died of multiple organ failure despite having achieved normal systemic hemodynamics by fluid resuscitation and vasoactive agents. Tissue hypoxia, especially in the splanchnic area, is still considered to be an important cofactor in the pathogenesis of multiple organ failure. Lavi et al. reported that gastric intramucosal acidosis developed and persisted for at least 48 h in patients resuscitated from septic shock to conventional resuscitative end points1. So it is necessary to further explore the effects of different vasoactive agents on the splanchnic perfusion in septic shock patients.

Conventionally, dopamine is considered to be the vasoactive agent of choice to improve systemic perfusion pressure. Previous studies showed dopamine increased systemic blood pressure and oxygen delivery and improved splanchnic perfusion2,3, so dopamine was widely recommended for the treatment of septic shock. On the other hand, for fear of excessive vasoconstriction, norepinephrine was considered to be deleterious4 to end-organ perfusion, thereby contributing to increased mortality. However, our study in sheep with septic shock demonstrated that both norepinephrine-dobutamine and dopamine could improve systemic hemodynamics, but norepinephrine-dobutamine was better than dopamine on splanchnic perfusion5. This current prospective, randomized clinical study was to observe the effects of dopamine, norepinephrine, epinephrine, and the combination of norepinephrine and dobutamine on hemodynamic profile and systemic and splanchnic oxygen metabolism in septic shock patients.
MATERIALS AND METHODS

Study population The study protocol was approved by our hospital ethical committee. Sixteen patients with septic shock in Department of Critical Care Medicine (ICU) of Zhong-Da Hospital, Southeast University were studied after informed consent was received from each patient or close relatives. And the study was conducted in accordance with the Helsinki Declaration. Patients ranged in age between 25 and 64 a; their scores on the Acute Physiology and Chronic Health Evaluation (APACHE) II at admission to ICU were averaged 22. All of the patients were the Han nation.

Septic shock was defined as sepsis with hypotension (systolic arterial pressure < 11.97 kPa or a fall more than 5.32 kPa from the baseline), persisting despite adequate fluid resuscitation and requiring the administration of vasopressor agents. The excluding criteria were: (1) patients were not expected to survive for more than 24 h; (2) patients were suffering from established cardiac diseases.

Hemodynamic and systemic oxygen metabolism monitoring A pulmonary artery catheter (7 Fr, Arrow International, USA) was inserted through right internal jugular vein. Cardiac output (CO) was measured by thermodilution method. Right atrial pressure (CVP), mean pulmonary arterial pressure (PAP), and pulmonary arterial wedge pressure (PAWP) were monitored using calibrated pressure transducer. Mean systemic arterial pressure (MAP) was continuously monitored via an indwelling radial artery catheter. Cardiac index (CI) was calculated as CI = CO/HR (heart rate). Systemic vascular resistance index (SVRI) was calculated as SVRI = (MAP - CVP)/CI × 80. Pulmonary vascular resistance index (PVRI) was calculated as PVRI = (PAP - PAWP)/CI × 80.

Arterial samples and mixed venous samples were withdrawn from the arterial catheter and the distal port of the pulmonary artery catheter, respectively. All blood gas measurements and arterial lactate concentrations were performed on a blood gas analyzer (Nova M, USA).

Oxygen delivery index (DO₂) was computed as DO₂ (L·min⁻¹·m⁻²) = CI × C×O₂ × 10, where arterial oxygen content (C×O₂) = hemoglobin concentration (Hb) × 1.36 × arterial oxygen saturation (S×O₂) + 0.0031 × arterial oxygen partial pressure (P×O₂).

Oxygen consumption index (VO₂) was calculated as VO₂ (L·min⁻¹·m⁻²) = CI × (C×O₂ - CVO₂) × 10, where CVO₂ (mixed venous oxygen content) = Hb × 1.36 × mixed venous saturation (SVO₂) + 0.0031 × mixed oxygen partial pressure (PVO₂). Oxygen extraction ratio (OER) was calculated as OER = VO₂/DO₂.

Assessment of gastric intramusosal pH (pH₁) pH₁ was assessed with the method described by Fiddian-Green, using a gastric tonometer (TRIP NGS, Tonometrics, Finland) inserted via the nasal route. The correct gastric position of the tonometer was verified radiologically.

The tonometer balloon was filled with 2.5 mL of 0.9% saline. Tonometred saline solution was assayed for pCO₂ following an equilibration period of 120 min with a blood gas analyzer (Nova M, Nova, USA). pH₁ was then calculated using a modified Henderson-Hasselbalch equation: pH₁ = 6.1 + log(arterial HCO₃⁻)/(F × 0.03 × tonometric saline pCO₂), where F is a time-dependent correction factor provided by the manufacturer. Enteral nutrition was discontinued during the period of tonometric monitoring.

Experimental protocol Each patient received dopamine firstly, then in a random succession epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine. Dosages of these agents were adjusted to maintain a MAP > 9.31 kPa. The switch from one treatment to another was performed by a progressive overlap of both treatments, during which doses of both therapies were adjusted to maintain a constant MAP. A continuous intravenous fluid infusion was performed to maintain a constant PAWP during the protocol. After 120 min of stability for each treatment, measurements of hemodynamic, oxygen metabolic, and gastric mucosal parameters were obtained.

Statistical analysis Data were analyzed on SPSS 10.0 software (SPSS Inc., 1999, USA). All data were expressed as x ± s. Statistical comparison was carried out using one way ANOVA, and if analysis of variance was significant, least significant difference was used. A P value < 0.05 was considered statistically significant.

RESULTS

Hemodynamics As shown in Tab 1, no statistical differences were found for CVP, PAWP, PAP,
Tab 1. Effects of dopamine, norepinephrine, epinephrine, and norepinephrine-dobutamine on hemodynamics. n = 16. x ± s. \(\cdot P < 0.05 \) vs Ep. \(\cdot P < 0.05 \) vs Dopa.

<table>
<thead>
<tr>
<th></th>
<th>HR /beat·min(^{-1})</th>
<th>MAP/kPa</th>
<th>PAP/kPa</th>
<th>CVP/kPa</th>
<th>PAWP/kPa</th>
<th>CI /L·min(^{-1}·m^{-2})</th>
<th>SVRI /kPa·s·L(^{-1})</th>
<th>PVRI /kPa·s·L(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopa</td>
<td>93 ± 10(^{b})</td>
<td>12.1 ± 1.5</td>
<td>3.9 ± 0.7</td>
<td>1.7 ± 0.7</td>
<td>1.6 ± 0.5</td>
<td>4.9 ± 1.0</td>
<td>131 ± 23</td>
<td>30 ± 9</td>
</tr>
<tr>
<td>Nor</td>
<td>93 ± 10(^{b})</td>
<td>12.5 ± 1.3</td>
<td>4.1 ± 0.7</td>
<td>1.7 ± 0.5</td>
<td>1.7 ± 0.5</td>
<td>4.4 ± 1.1</td>
<td>157 ± 48</td>
<td>36 ± 15</td>
</tr>
<tr>
<td>Ep</td>
<td>110 ± 14</td>
<td>11.6 ± 0.8</td>
<td>4.3 ± 0.8</td>
<td>1.7 ± 0.5</td>
<td>1.7 ± 0.5</td>
<td>5.2 ± 1.1</td>
<td>118 ± 33</td>
<td>31 ± 13</td>
</tr>
<tr>
<td>Nor + Doba</td>
<td>87 ± 9(^{e})</td>
<td>12.0 ± 1.3</td>
<td>4.0 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>1.7 ± 0.5</td>
<td>4.1 ± 1.0</td>
<td>163 ± 68</td>
<td>35 ± 16</td>
</tr>
</tbody>
</table>

HR; heart rate; MAP; mean systemic arterial pressure; PAP; mean pulmonary arterial pressure; PAWP; pulmonary arterial wedge pressure; CI; cardiac index; SVRI; systemic vascular resistance index; PVRI; pulmonary vascular resistance index; Dopa; dopamine; Nor; norepinephrine; Ep; epinephrine; Nor + Doba; norepinephrine-dobutamine.

and MAP during dopamine, norepinephrine, epinephrine and norepinephrine-dobutamine infusions. Epinephrine induced a significant increase in heart rate compared with other three groups (\(P < 0.05 \)), and a significant higher CI compared with norepinephrine alone and norepinephrine-dobutamine (\(P < 0.05 \)).

Systemic oxygen metabolism There was no statistical difference among each group for \(D_{O2} \). However, OER values were lower with epinephrine infusion as compared with other three groups (\(P < 0.05 \)). Arterial lactate concentrations dropped significantly with norepinephrine-dobutamine as compared with dopamine and epinephrine infusions (\(P < 0.05 \), Tab 2).

Gastric mucosal oxygenation As compared with epinephrine infusion, the pH, values were higher with norepinephrine-dobutamine infusion (\(P < 0.05 \), Tab 2). Although the differences were not statistically significant between each treatment, the difference between gastric and arterial \(p_{CO2} (P_{a-c}CO2) \) with norepinephrine-dobutamine tended to be the lower compared with those obtained with dopamine, epinephrine, or norepinephrine alone.

DISCUSSION

With regard to systemic hemodynamics, the present study demonstrated that dopamine, norepinephrine, epinephrine, or the combination of norepinephrine and dobutamine could restore and maintain stable perfusion pressure and oxygen delivery in patients with septic shock. But none of the four therapies could reverse the decreased pH completely, which is a surrogate marker of tissue oxygenation and a good prognostic predictor\(^{17}\). Gastric intramucosal acidosis persisted despite normalized systemic hemodynamics and oxygen delivery. Fourteen out of 16 patients were died of multiple organ failure. Thus, as the resuscitation end point of septic shock, normalization of systemic hemodynamics and elevation of oxygen delivery are far less enough. It is fundamental to improve tissue hypoxia to prevent multiple organ failure.

One of the main findings in present study was the significant increase in pH when norepinephrine was used in combination with dobutamine. After norepinephrine-dobutamine infusion, cardiac index was significant lower than that after epinephrine and dopamine infusion, thus this effect was not associated with an increase in cardiac

Tab 2. Effects of dopamine, norepinephrine, epinephrine, and norepinephrine-dobutamine on oxygen metabolism. n = 16. x ± s. \(\cdot P < 0.05 \) vs Dopa. \(\cdot P < 0.05 \) vs EP. \(\cdot P < 0.05 \) vs Nor + Doba.

<table>
<thead>
<tr>
<th></th>
<th>(D_{O2} /) L·min(^{-1}·m^{-2})</th>
<th>(V_{O2} /) L·min(^{-1}·m^{-2})</th>
<th>OER/%</th>
<th>Lactate/mmol·L(^{-1})</th>
<th>pH</th>
<th>(P_{a-c}CO2) kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopa</td>
<td>636 ± 282</td>
<td>165 ± 32</td>
<td>29 ± 8</td>
<td>2.6 ± 2.2(^{d})</td>
<td>7.21 ± 0.10</td>
<td>3.6 ± 2.0</td>
</tr>
<tr>
<td>Nor</td>
<td>511 ± 165</td>
<td>159 ± 31</td>
<td>33 ± 6</td>
<td>1.6 ± 1.2</td>
<td>7.18 ± 0.14</td>
<td>4 ± 3</td>
</tr>
<tr>
<td>Ep</td>
<td>392 ± 173</td>
<td>137 ± 40(^{b})</td>
<td>24 ± 6</td>
<td>2.3 ± 1.6(^{d})</td>
<td>7.14 ± 0.07</td>
<td>4.1 ± 0.8</td>
</tr>
<tr>
<td>Nor + Doba</td>
<td>406 ± 175</td>
<td>134 ± 30(^{b})</td>
<td>30 ± 8</td>
<td>1.1 ± 0.7</td>
<td>7.25 ± 0.09</td>
<td>3.1 ± 1.7</td>
</tr>
</tbody>
</table>

\(D_{O2} \); oxygen delivery index; \(V_{O2} \); oxygen consumption index; OER; oxygen extraction ratio; pH; gastric mucosal pH; \(P_{a-c}CO2 \); gastric-arterial \(p_{CO2} \) difference; Dopa; dopamine; Nor; norepinephrine; Ep; epinephrine; Nor + Doba; norepinephrine-dobutamine.
index. It may be related to a blood flow redistribution effect of dobutamine toward gastric mucosa. Dobutamine-induced redistributive effect may be due to either an increase of the fraction of cardiac output that was distributed to the global hepatosplanchnic blood flow and/or to a redistribution of blood flow within gastric wall layers toward mucosa. Thus, the increase in pH after norepinephrine-dobutamine infusion could be the effect of β-adrenergic effects of dobutamine.

To the contrary, although cardiac index was much higher than other three therapies, oxygen extraction ratio was the lowest after epinephrine infusion. The net effects of epinephrine infusion on systemic and splanchnic region oxygen metabolism were manifested as the lowest pH and the higher lactate concentration, showing an apparent systemic and tissue ischemia. This may be related to increased shunt flow and decreased tissue oxygen uptake. As epinephrine has the most strong thermogenic effect, it may increase oxygen demand of tissues when used in patients with septic shock.

Dopamine could increase oxygen delivery and oxygen consumption, but redistributive blood flow away from the gut mucosa. In the present study, although dopamine did not show evident deleterious effect on gastric perfusion in the present study compared with norepinephrine, epinephrine, and norepinephrine-dobutamine, the lactate level after dopamine infusion was much higher than other three therapies. That is to say, dopamine is detrimental to oxygen metabolism for septic shock patients.

In conclusion, for the same level of MAP as the therapeutic goal in patients with septic shock, present study showed that administration of dopamine, norepinephrine, epinephrine, or norepinephrine-dobutamine improved systemic hemodynamics effectively. However, epinephrine and dopamine had deleterious effect on oxygen metabolism, while norepinephrine plus low dose of dobutamine improved gastric mucosal perfusion and tissue oxygen utilization.

REFERENCES

粘膜氧代谢的影响。方法：首先用多巴胺，然后随机应用肾上腺素、去甲肾上腺素或去甲肾上腺素-多巴酚丁胺，调整剂量维持平均动脉压>9.31 kPa。药物注射后120 min，记录血流动力学、氧代谢及胃粘膜pH参数。结果：与其它三组比较，肾上腺素使心率明显增加（P<0.05），心排指数明显高于去甲肾上腺素或去甲肾上腺素-多巴酚丁胺组（P<0.05），氧摄取率明显低于其它三组（P<0.05）。与多巴胺、肾上腺素比较，去甲肾上腺素-多巴酚丁胺合用时动脉血乳酸值明显降低（P<0.05）。与肾上腺素比较，去甲肾上腺素-多巴酚丁胺合用时胃粘膜pH值明显增加（7.25±0.09 vs 7.14±0.07，P<0.05）。结论：多巴胺、去甲肾上腺素、肾上腺素及去甲肾上腺素-多巴酚丁胺均能升高血压。但是肾上腺素和多巴胺使氧代谢恶化，而去甲肾上腺素与小剂量多巴酚丁胺合用可改善胃粘膜灌注和组织氧利用。

（责任编辑 吕 静）

The 8th Annual Conference and Exhibition of the Society for Biomolecular Screening

Info: The Society for Biomolecular Screening
36 Tamarack Avenue, # 348
Department of Pharmacology
Danbury, CT 06811, USA
Phn +1 203-743-1336
Fax +1 203-748-7557
E-mail t shackid@sbsonline.org
Website: www.sbsonline.org