Cytotoxicity of flutamide and 2-hydroxyflutamide and their effects on CYP1A2 mRNA in primary rat hepatocytes

WANG Hai-Xue, MA Xiao-Chao, DENG Qiao-Lin, LI Duan (Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200032; State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China)

KEY WORDS flutamide; 2-hydroxyflutamide; cytotoxicity; cytochrome P-450 CYP1A2

ABSTRACT

AIM: To compare the cytotoxicity of flutamide and its active metabolite 2-hydroxyflutamide and their effects on cytochrome P-450 1A2 mRNA in primary rat hepatocytes. METHODS: After the isolation of hepatocytes and the primary incubation for 4 h, flutamide and 2-hydroxyflutamide were added respectively to the medium at the concentration of 10, 20, and 50 mg/L and incubated for 8 h. Cytotoxicity of hepatocytes was assessed by Trypan blue exclusion, lactate dehydrogenase (LDH) leakage, percentage of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) release, and reduced glutathione (GSH). The effect of flutamide and 2-flutamide on the CYP1A2 mRNA level was further analyzed by Northern blot. RESULTS: After incubation for 8 h, cell viability was observed by Trypan blue exclusion. The increase of ALT and AST activity and the decrease of glutathione content were also noted at 10, 20, and 50 mg/L of flutamide and 50 mg/L of 2-hydroxyflutamide as compared with normal rat hepatocytes. Induction of CYP1A2 mRNA were 2-, 5-, and 7.5-fold at 10, 20, and 50 mg/L of flutamide and 3.5-fold at 50 mg/L of 2-hydroxyflutamide. CONCLUSION: Cytotoxicity of flutamide and its effect on CYP1A2 mRNA were stronger than those of its active metabolite 2-hydroxyflutamide in primary rat hepatocytes.

INTRODUCTION

Flutamide (3'-trifluoromethyl-4'-nitro-2-methyl-}

1 Project supported by Fudan University Innovation Foundation, No CQF303801.
2 Correspondence to Prof LI Duan.
Ph: 86-21-6404-1900, ext 2167. E-mail dli@shnu.edu.cn
Received 2001-07-12 Accepted 2002-03-16

propionylamide) is a nonsteroidal antiandrogen devoid of other hormonal activity and is recognized world-wide as the most beneficial drug for the treatment of patients with advanced prostate cancer when used in combination with various luteinizing hormone-releasing factor (LHRH) agonists[1,2]. This antiandrogen is also used in combination with oral contraceptives for the treatment of hirsutism[3,4] and benign prostatic hyperplasia[5].

The therapeutic activity of flutamide is compromised by its potential liver toxicity. In 1091 patients consecutive treated with flutamide, the incidence of liver toxicity (defined as ≥ 4-fold increase in serum transaminase activity) was 0.36%[1]. Flutamide-induced hepatitis is cholestatic and/or hepatocellular in type, and infrequent hepatitis has been observed. Some patients have documented blood eosinophilia, suggesting that an immune mechanism is possible[6]. In isolated rat hepatocytes, flutamide toxicity can be decreased by piperonyl butoxide (an inhibitor of cytochrome P450) and increased by β-naphthoflavone (an inducer of cytochrome P450 1A1), indicating that cytochrome P-450 plays an important role in flutamide induced liver toxicity.

2-Hydroxyflutamide is the major active metabolite of flutamide in vivo and has a lower IC50 than flutamide in specific binding experiments in mice, rats, and human androgen-sensitive tissues. Our studies compared the cytotoxicity of flutamide and 2-hydroxyflutamide and their effects on CYP1A2 mRNA in primary rat hepatocytes.

MATERIALS AND METHODS

Animals. Adult male Sprague-Dawley rats weighing between 200 – 250 g (Experiment Animal Center of Fudan University, Grade Prince, Certification No 0121) were housed at a temperature of 20 – 25 °C under a 12-h light/dark cycle with 50% relative humidity and kept in filtered and pathogen-free air.
Chemicals Flutamide was provided by Hongqi Pharmaceutical Corporation (Shanghai, China). 2-Hydroxyflutamide was synthesized by Prof. XIA Peng (Department of Pharmaceutical Chemistry, School of Pharmacy, Fudan University). These two chemicals were dissolved in ethanol. Materials for cultivating hepatocytes such as D-Hanks', Dulbecco's Modified Eagle's Medium (DMEM), O-phthalaldehyde (OPT), Triton X-100, and calf serum were obtained from Shanghai Shisheng Biology Corporation. Trypsin and collagenase were purchased from Sigma Chemical Corporation (St Louis, MO, USA). The radiolabeling kit and nylon or nitrocellulose membranes were obtained from Amersham (Aylesbury, UK) and the Taq DNA polymerase was purchased from Pharmacia (Uppsala, Sweden). [32P]dCTP was obtained from ICN Biomedicals, Inc (Costa Mesa, CA). All other chemicals were of high purity and purchased from commercial sources.

Isolation and culture of hepatocytes Male Sprague-Dawley rats were anesthetized by injection of sodium pentobarbital (50 mg/kg, ip). Hepatocytes were isolated using a two-step perfusion technique as described previously[1]. The portal vein was perfused with D-Hanks buffer at a flow rate of 2.5 mL/min for 8 min to remove blood. As soon as the liver became grayish brown in color, a second buffer solution containing collagenase (type IV, 0.03 %, pH 7.6, 37 °C) was perfused at the same rate for 10 min. Following mechanical dissociation, the cells were filtered through four layers of cotton gauze. The filtrate was centrifuged at 1000 × g for 2 min and the sediment was washed twice by D-Hanks buffer and resuspended in DMEM containing 20 % fetal calf serum and supplemented with streptomycin (0.1 g/L), benzylpenicillin (100 kU/L), dexamethasone (0.1 µmol/L), and insulin (0.1 µmol/L). After cultured for 4 h at 37 °C in 5 % CO2 atmosphere, non-adherent hepatocytes were eliminated by removing the medium. Cell viability was assessed using 0.4 % Trypan blue exclusion and was always more than 90 % prior to each experiment. Isolations that yielded cells with less than 90 % viability were not included in this study.

Cytotoxicity studies Hepatocytes (5 × 10^6 cells/cm²) were seeded onto 24-well tissue culture plates. Final concentrations of flutamide or 2-hydroxyflutamide in medium were 10, 20, and 50 mg/L. Untreated hepatocytes were used as control. Cells alone or in combination with flutamide or 2-hydroxyflutamide at each concentration were cultured for 8 h at 37 °C in 5 % CO2 atmosphere.

At the end of the incubation period, the cells were loosened with 2 % trypsin, and washed three times with medium, each time decanting the medium after cold and low-speed centrifugation (4 °C, 500 × g for 1–2 min) before examining for viability and enzyme levels. Cell viability was assessed by Trypan blue exclusion and percentage of viable cells was calculated.

Culture supernatant 100 µL was removed from culture dishes following 8 h of exposure to the drugs and analyzed for LDH leakage into culture medium. LDH leakage was expressed in percentage of total LDH in cells at the beginning of the incubation.

Cytotoxicity was also expressed as the percentage of ALT or AST released by cells into the culture medium, and calculated by the following formula: ALT or AST release (%) = (A/B) × 100 %

Where A represents ALT or AST released into culture medium after cell incubation, B represents the total ALT or AST activity obtained by lysing the cells in culture medium containing 0.1 % Triton X-100 (w/v).

Reduced glutathione (GSH) After incubation with different concentrations of flutamide and 2-hydroxyflutamide, 5 × 10^6 hepatocytes were lysed with 0.1 % Triton X-100 in medium and centrifuged to isolate supernatant. The amount of GSH was determined by reaction with OPT 30 mg/L (pH 8.0) and measured in 1 × 10^6 cells incubated with various concentrations of flutamide and 2-hydroxyflutamide.

Northern blot analysis After incubation for 8 h at various concentrations of flutamide and 2-hydroxyflutamide, total hepatocyte RNA was isolated using Trizol reagent (Life Technologies, Gaithersburg, MD) and used for hybridization. Northern blot was performed after the denatured RNA (10 µg) was size-fractionated on a 1 % agarose gel containing formaldehyde. Hybridization proceeded at 42 °C overnight in a mixture containing 50 % formamide, 5 × Denhardt's solution, 5 × SSPE, salmon sperm DNA 0.1 µg/L, and 32P-labeled cDNA probes. cDNA of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the intrinsic standard during Northern blot analysis. cDNA probe of rat CYP1A2 was synthesized by Shanghai Sangon Co. The primer sequences were: sense primer, 5'-GGACCTGTGG-GGCTTGCCCTTCA-3'; antisense primer, 5'-AGCCCTCATGCTGACTGCTC-3'. Blots were washed twice for 15 min with 2 × SSC, 0.1 % SDS at 65 °C, and then
twice for 15 min with 0.2 x SSC, 0.1 % SDS at 60 °C. Intensity of the hybridized bands was measured with a bioimage analyzer (BAS2000; Fujix, Tokyo, Japan) and normalized to the intensity of the hybridized band for the rat GAPDH probe. Membranes were exposed to Fuji X-ray film at -80 °C using an intensifying screen. The hybridized cDNA probe was stripped from the membranes between each hybridization by soaking the membranes in boiling water. Experiments were repeated at least twice and the same results were observed in all cases\(^{(10)}\).

Scanning densitometry Scanning densitometry was performed with a microcomputer imaging device, model MI (Imaging Research, St Catharines, Ontario, Canada). The area of each lane was integrated using MCID software (version 4.20, revision 1.0), with background subtraction.

Statistical analysis One-way analysis of variance (ANOVA) was used to assess the differences between treated groups. For each significant effect of treatment, the Newman-Keuls test was used for comparison of multiple group means. The criterion for statistical significance was \(P < 0.05 \).

RESULTS

Cytotoxicity of flutamide and 2-hydroxyflutamide After incubation for 8 h, the percentage of viable cells assessed by Trypan blue exclusion decreased substantially in 10, 20, and 50 mg/L of flutamide and 50 mg/L of 2-hydroxyflutamide, respectively. The percentage of ALT, AST, and LDH leakage release of the hepatocytes exposure to flutamide was higher than that of 2-hydroxyflutamide at a given concentration of each corresponding group. Conversely, the GSH content of rat hepatocytes decreased substantially in the flutamide exposure (Tab 1).

Effects on CYP1A2 mRNA The effects of flutamide and 2-hydroxyflutamide on the CYP1A2 gene subfamily were assessed by mRNA levels. CYP1A2 mRNA increase 2-, 5-, and 7.5-fold following exposure to flutamide at 10, 20, and 50 mg/L, respectively, in hepatocytes cultured for 8 h. In contrast, cells treated with 2-hydroxyflutamide showed no increase in CYP1A2 mRNA at 10 and 20 mg/L, while 3.5-fold increase was noted at the high concentration (50 mg/L) treatment (Fig 1).

DISCUSSION

Since flutamide was marketed in February 1989, serious hepatic toxicity resulted from flutamide had been reported in the general medical literature. The major symptoms include anorexia, nausea, vomiting, fatigue, discolored urine, abdominal discomfort, and jaundice. To prevent the development of serious hepatic dysfunction, all patients receiving flutamide should be monitored clinically for signs and symptoms of hepatic injury\(^{(9)}\).

In the present study, isolated hepatocytes were used to probe the mechanism of liver toxicity due to flutamide. Isolated hepatocytes are a useful model for pharma-

Tab 1. Cytotoxic effect of flutamide and 2-hydroxyflutamide in primary rat hepatocytes. \(n = 5. \ x \pm s. \ ^{a} P < 0.05, \ ^{b} P < 0.01 \) vs control.

<table>
<thead>
<tr>
<th>Group</th>
<th>Viable cells/%</th>
<th>LDH/%</th>
<th>ALT/%</th>
<th>AST/%</th>
<th>GSH/μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>94 ± 4</td>
<td>100 ± 31</td>
<td>17.1 ± 1.3</td>
<td>22 ± 5</td>
<td>8.3 ± 0.8</td>
</tr>
<tr>
<td>Flutamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mg/L</td>
<td>82 ± 15(^{a})</td>
<td>638 ± 35(^{a})</td>
<td>29 ± 6(^{b})</td>
<td>29 ± 8(^{a})</td>
<td>6.36 ± 0.6(^{b})</td>
</tr>
<tr>
<td>20</td>
<td>74 ± 20(^{a})</td>
<td>657 ± 42(^{a})</td>
<td>36 ± 11(^{c})</td>
<td>34 ± 12(^{a})</td>
<td>6.68 ± 0.14(^{b})</td>
</tr>
<tr>
<td>50</td>
<td>58 ± 12(^{a})</td>
<td>914 ± 46(^{a})</td>
<td>40 ± 14(^{d})</td>
<td>46 ± 10(^{a})</td>
<td>5.0 ± 0.6(^{e})</td>
</tr>
<tr>
<td>2-Hydroxyflutamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mg/L</td>
<td>88 ± 6</td>
<td>100 ± 51</td>
<td>8 ± 5</td>
<td>23 ± 7</td>
<td>8.5 ± 0.4(^{a})</td>
</tr>
<tr>
<td>20</td>
<td>85 ± 8</td>
<td>121 ± 16</td>
<td>22 ± 6</td>
<td>25 ± 10</td>
<td>7.29 ± 0.09(^{a})</td>
</tr>
<tr>
<td>50</td>
<td>76 ± 7(^{e})</td>
<td>240 ± 62(^{b})</td>
<td>33 ± 15(^{b})</td>
<td>32 ± 8</td>
<td>6.17 ± 0.21(^{a})</td>
</tr>
</tbody>
</table>

The LDH release in culture is expressed in percentage of control value. AST or ALT activity obtained by lysing the cells with culture medium containing 0.1 % Triton X-100 is defined as 100 %. GSH was measured in 1 x 10\(^{6}\) cells incubated with various concentrations of flutamide and 2-hydroxyflutamide.
REFERENCES

氯他胺和 2-羟基氯他胺对大鼠原代培养肝细胞毒性及 CYP1A2 mRNA 的影响

王海学，马小超，邓巧琳，李瑞
（复旦大学药学院药理学教研室，上海 200032）

目的：氯他胺及其活性代谢产物 2-羟基氯他胺对大鼠原代培养肝细胞毒性及对 CYP1A2 mRNA 的影响。方法：分离大鼠肝细胞，原代培养 4 h，台酚蓝染法检测肝细胞活力。氯他胺和 2-羟基氯他胺在培养液中浓度分别为 10、20 和 50 mg/L。肝细胞毒性检测包括台酚蓝染色法、乳酸脱氢酶（LDH）释放量、谷丙转氨酶（AST）和谷草转氨酶（ALT）释放百分比、谷胱甘肽（GSH）含量。

结果：药物作用 8 h 后，氯他胺三个剂量组和 2-羟基氯他胺 50 mg/L 组出现肝细胞损伤，表现为 ALT 和 AST 释放百分比增加、GSH 含量下降。氯他胺三个剂量组使 CYP1A2 mRNA 水平分别升高 2.5 和 7.5 倍，而 2-羟基氯他胺仅在 50 mg/L 时使 CYP1A2 mRNA 水平升高 3.5 倍。结论：氯他胺对原代培养大鼠肝细胞的毒性大于其活性代谢物 2-羟基氯他胺，且明显增加 CYP1A2 mRNA 水平。

关键词 氯他胺；2-羟基氯他胺；细胞毒性；细胞色素 P-450 CYP1A2