Distribution of angiotensin converting enzyme gene polymorphism among Northern Hans, Daurs, and Ewenkis

ZHANG Ying-Min, ZHANG Li-Ying1, WANG Ke-Qiang2, GE Jun-Bo
(The Research Institute of Cardiovascular Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China; 1The Clinical Laboratory of Affiliated Hospital of Inner Mongolia Medical College, Huhhot 010059, China)

KEY WORDS peptidyl-dipeptidase A; genes; polymorphism (genetics); polymerase chain reaction

ABSTRACT

AIM: To observe the polymorphism of angiotensin-converting enzyme (ACE) gene in Northern Hans, Daurs, and Ewenkis of China. METHODS: The polymerase chain reaction was used to type the insertion/deletion polymorphism at intron 16 of ACE gene among 90 Northern Hans, 84 Daurs, and 64 Ewenkis individuals. The experiment displayed the distribution in three kinds of ACE genotype: ID (heterozygotes of insertion and deletion), DD (homozygotes of deletion), and II (homozygote of insertion). RESULTS: In Northern Hans the percentages of the distributing ACE I/D genotype were ID 27.8 %, DD 17.8 %, and II 54.4 %. The I/D genotype frequency of Daurs individuals were ID 60.7 %, DD 26.2 %, and II 13.1 %. The Ewenkis genotype frequency were ID 70.3 %, DD 21.9 %, and II 7.8 %. CONCLUSION: The polymorphism of ACE gene of Northern Hans is different from that of Daurs and Ewenkis in China.

INTRODUCTION

The functions of the angiotensin-converting enzyme (ACE) include the metabolism of bradykinin and the conversion of angiotensin I to angiotensin II. A strong interfamilial resemblance of serum ACE together with segregation studies suggest that a major gene regulates the circulation level. The human angiotensin-I converting enzyme gene covers 21 kilobase pairs (kb) and comprised 26 exons and 25 introns. The ACE has been assigned to 17q23. The ACE gene consists of 300-bp Alu sequence within intron 16, and I/D polymorphism is observable. The ACE gene I/D polymorphism may have important clinical relevance. A number of associations of the polymorphism in cardiovascular disease have now been recognized, which may be related to the higher level of ACE that accompanies the presence of the D allele. The relationship of ACE gene polymorphism was described in a study that includes white and black subjects. In the present study, there is no literature if the polymorphism has differences in different minorities. The report discovered the polymorphism distribution of ACE gene in three disparate minorities. It can provide data for human genetic research, and clarify the incidence of diseases of some illness in three minorities from level of gene. There are many minorities in Bilingual League of Inner Mongolia Autonomous Region, and the present study reported the polymorphism distribution of ACE gene in three minorities.

MATERIALS AND METHODS

Materials A sample (n = 90) of Hans subjects was a healthy population, Daurs (n = 84) and Ewenk samples (n = 64) were randomly taken from the healthy population in Xilingole League of Inner Mongolia Autonomous Region. We collected 5 mL venous blood to distill DNA.

Methods Genomic DNA was isolated from the blood leucocytes by standard proteinase K-phenol method. The PCR assay for I/D polymorphism was performed as literature described. Briefly, 1 μL genomic DNA amplified with a forward primer (5’CTG GAG ACC ACT CCC ATC CTT TCT TCT 3’), and a reverse primer (5’ GAT GTG ATC ACA TTC TGC AGA T 3’). Amplification was performed in a final volume of 10 μL, contained 7.5 pmol/μL each primer (Huamei company, Beijing), 1 μL MgCl2, 1 μL KCl, 1 μL of each dNTP, and 0.3 μ Taq polymerase (Huamei company, Beijing).
DNA amplification was achieved by an initial denaturation at 92 °C for 120 s, denaturation at 92 °C for 30 s, anneal at 58 °C for 45 s, and final extension at 72 °C for 60 s, and total 22 cycles, then final extension at 72 °C for 600 s. PCR products were subjected to 2 % agarose gel electrophoresis, and two alleles were identified: a 190-bp fragment D (in the absence of the deletion) and a 490-bp fragment I (in the presence of the insertion).

Statistical analysis Significant difference in frequency distribution was assessed using chi-square test. P less than 0.05 is considered to be statistical significance.

RESULTS

The PCR genotype of I/D polymorphism of the ACE gene (Fig. 1). The Pgen 100-bp DNA marker (Promega USA) is shown at right. The 490-bp insertion fragment denotes the I allele, the 190-bp deletion fragment indicates the D allele, the 490-bp and 190-bp fragment are insertion/deletion heterocyclin fragment. Namely, II, DD, ID three genotype. The distribution of II, ID, and DD genotype in three ethnic groups are shown in Tab. 1. The genotype frequency distribution in Northern Hans group were ID 27.8 %, DD 17.8 %, II 54.4 %. Dahurs populations were ID 60.7 %, DD 26.2 %, II 13.1 %. Evenkis populations were ID 70.3 %, DD 21.9 %, II 7.8 %. In contrast, the genotype frequency of Hans have marked difference with Dahurs and Evenkis (χ² = 50.59, P < 0.05). There is no difference in the genotype frequency between the Dahurs and Evenkis groups (χ² = 1.48, P > 0.05).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 bp</td>
<td>277 bp</td>
<td>330 bp</td>
<td>480 bp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. PCR genotyping of I/D polymorphism of ACE gene. The 490-bp fragments denotes the I allele, and the 190-bp fragment indicates the D allele. Lane 1 and 2: genotype II, Lane 3 and 4: genotype ID, Lane 5 and 6: genotype DD.

DISCUSSION

The functions of the angiotensin-converting enzyme covered the metabolism of bradykinin and converted angiotensin I to angiotensin II [5]. Angiotensin II is an octapeptide that has vasoactive and sodium-retaining activities along with a capacity to stimulate vascular proliferation [6]. We have shown that frequency of the I allele of the ACE gene was similar to the values reported in the Japanese, but relatively higher in normal Northern Hans, compared with white[7] and black populations in Europe, African-Americans [8], and Africans [9], however lower than in Someians [9] (Tab 2). The polymorphism of ACE gene in different ethnic groups of the same region was not reported. We found that the Northern Hans showed marked difference compared with Dahurs and Evenkis. There is highest II genotype in Hans, but there is highest ID genotype in Dahurs and Evenkis. This difference might be related to genetic background.

The results of the former study of white people confirmed ACE gene I/D polymorphism associated with serum ACE [11]. The level of ACE activity was significantly higher in the white people with D alleles than that with I alleles, whereas the level of ACE activity was intermediate in those who were heterozygous. On the other hand, in black no association of the I/D polymorphism with serum ACE activity was found. There was thus a distinctly different association of the ACE gene polymorphism with the regulation of serum ACE activity in whites and blacks. Rigat's research indicates marked difference between the serum ACE levels which observed and subjects in each of the three ACE genotype classes [12]: Serum immunoreactive ACE concentrations were 229.3, 393, 494 mg/L for II, ID, DD genotype respectively. The insertion/deletion polymorphism accounted for 47 % of total phenotypic variance of serum ACE. As for Northern Hans, Dahurs, Evenkis, it merits further research the relation between the polymorphism and the serum ACE.

Recent work on the I/D ACE polymorphism has demonstrated that the DD genotype is associated with increased risk of cardiovascular diseases, especially in those without other risk factors [2], increased death rate and sudden death of ischemia heart disease, hyotrophic cardiomyopathy [12-16]. Meanwhile, positive associations have been observed between the ACE D allele and essential hypertension, myocardial infarction, and left ventricular hypertrophy [16,17]. Clinical trails have also shown the benefits of ACE inhibitors in hypertension and congestive heart failure and decreased the risk of reinfraction in patients who experience acute myocardial infarction [10].
Tab 1. Genotypic and allelic frequencies of I/D polymorphism of the ACE gene among three nationalities.

<table>
<thead>
<tr>
<th>Nationality</th>
<th>n</th>
<th>Genotype frequency</th>
<th>Allele type frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>Hans</td>
<td>90</td>
<td>49 (54.4 %)</td>
<td>25 (27.8 %)</td>
</tr>
<tr>
<td>Dahur</td>
<td>84</td>
<td>11 (13.1 %)</td>
<td>51 (60.7 %)</td>
</tr>
<tr>
<td>Ewenk</td>
<td>64</td>
<td>5 (7.8 %)</td>
<td>45 (70.3 %)</td>
</tr>
</tbody>
</table>

Tab 2. Frequency of I/D polymorphism of ACE gene in different groups.

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>n</th>
<th>Genotype frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>Japanese</td>
<td>76</td>
<td>49.00 %</td>
<td>18.00 %</td>
</tr>
<tr>
<td>British</td>
<td>98</td>
<td>43.00 %</td>
<td>40.00 %</td>
</tr>
<tr>
<td>American-Whites</td>
<td>139</td>
<td>47.40 %</td>
<td>30.94 %</td>
</tr>
<tr>
<td>American-Blacks</td>
<td>223</td>
<td>51.00 %</td>
<td>37.00 %</td>
</tr>
<tr>
<td>Nigerian</td>
<td>80</td>
<td>49.00 %</td>
<td>35.00 %</td>
</tr>
<tr>
<td>Samoans</td>
<td>58</td>
<td>15.52 %</td>
<td>1.72 %</td>
</tr>
</tbody>
</table>

In conclusion, this article indicates that the polymorphism of ACE gene of Hans differs from that of Dahurs and Ewenks of China. From the point of view of anthropology, the polymorphism has important significance to acknowledge the different clinical representation of hypertension, coronary heart disease and diabetes in different races. With regard to appraising ACE inhibitor clinical exertion and curative effect, and the relevancy which the difference of the polymorphism of ACE gene and curative effect of ACE inhibitor are not neglectful factor, and that they deserve to further discuss.

REFERENCES

血管紧张素转换酶基因多态性在北方汉族、达斡尔族、鄂温克族中的分布

张英民，张丽英¹，王克强²，葛均波（复旦大学中山医院心血管病研究所，上海 200032，中国；¹内蒙古医学院附院检验科，呼和浩特 010059，中国）

关键词：血管紧张素转换酶基因，多态性，北方汉族，达斡尔族，鄂温克族

目的：观察血管紧张素转换酶（ACE）基因多态性在北方汉族、达斡尔族和鄂温克族中的分布。方法：采用聚合酶链反应（PCR）检测 90 例北方汉族、84 例达斡尔族和 64 例鄂温克族的 ACE 基因内含子 16 的插入/缺失多态标记。得到三种基因型：插入/缺失杂合子（ID）、缺失纯合子（DD）、插入纯合子（II）。结果：北方汉族 ACE 基因频率 ID 72.8 %、DD 17.8 %，II 5.4 %，达斡尔族 ID 69.7 %、DD 26.2 %，II 4.1 %，鄂温克族 ID 70.3 %、DD 21.9 %，II 7.8 %。结论：中国北方汉族与达斡尔族和鄂温克族之间 ACE 基因多态性存在差异。

（责任编辑：吕静）

2001 年老年性痴呆和帕金森氏病国际学术会议

暨全国第三届老年痴呆和抑郁症学术会议

2001 年 10 月 22 - 25 日 中国·武汉

联系人：占少卿，刘晓刚
地址：武汉市胜利街 177 号中华医学会武汉分会
邮编：430014
电话：86-27-8277-1761
传真：86-27-8283-7652
E-mail：lwhars@public.wh.hb.cn