Accumulation of ofloxacin and tosufloxacin in fluoroquinolone-resistant \textit{E coli}

XIA Pei-Yuan2, FENG Ping, ZHONG Li, LÜ Xiao-Ju, LEI Bing-Jun (Department of Infectious Diseases, the First Affiliated Hospital, West China University of Medical Sciences, Chengdu 610041, China)

\textbf{KEY WORDS} microbial drug resistance; ofloxacin; tosufloxacin; fluoroquinolone; \textit{Escherichia coli}; cell membrane permeability

\textbf{ABSTRACT}

\textbf{AIM:} To make sure whether there is a difference in mechanism existed in the resistant \textit{E coli} strains accumulated hydrophilic fluoroquinolone ofloxacin and hydrophobic fluoroquinolone tosufloxacin. \textbf{METHODS:} Fluoroquinolone accumulation in bacteria and effect of active efflux were measured by fluorescence method. Analysis of outer membrane proteins was made by SDS-PAGE. \textit{E coli} strains included JF701 and JF703 that are OmpC- or OmpF-deficient mutants of \textit{E coli} K-12 respectively, and the susceptible strain Ecs and its \textit{in-vitro} selected resistant strains R2, R256, and clinical resistant isolates R5, R6. \textbf{RESULTS:} Ecs accumulated ofloxacin almost at the same concentration as JF701, but JF703 did about 1/2 of that lower than JF701. However, four resistant strains accumulated ofloxacin about 5 to 7-fold lower than those susceptible strains. On the other hand, there was no significant difference for the accumulation of tosufloxacin between fluoroquinolone-resistant and -susceptible strains. After addition of proton ionophore DNP for 5 min and 10 min, the accumulation of tosufloxacin slowly decreased in \textit{E coli} strains, whereas the accumulation of ofloxacin was increased, especially in the resistant strains. A good relevance exists between the accumulation increment of ofloxacin and its MIC for each \textit{E coli} strain after addition of DNP for 5 min and 10 min (r = 0.9623 and 0.8006 respectively). Furthermore, both OmpF and OmpC in Ecs, OmpF-deficiency in R2, R256 and OmpC-deficiency in R5, R6 were observed. \textbf{CONCLUSION:} The accumulation of ofloxacin other than tosufloxacin could be reduced by OmpF-deficiency and active efflux, and the latter may be an important factor in the development of resistance to hydrophilic fluoroquinolone in \textit{E coli}.

\textbf{INTRODUCTION}

Fluoroquinolone resistance is mediated by target changes1 and/or decreased intracellular accumulation2,3. The latter resulted from an efflux mechanism which has been described in several Gram positive and Gram negative bacteria4. In such a situation, drug is pushed out of the bacteria before it reaches the target.

In \textit{E coli}, reduced accumulation of fluoroquinolone seems not only involved endogenous active efflux system5 or multiple-drug efflux pumps4, but also involves the loss of some outer membrane proteins (OMP), especially porin OmpF6. However, OmpF-deficiency seems not to affect the accumulation of hydrophobic fluoroquinolones such as sparfl oxacin (SPLX) and pefloxacin (PFLX)7. The impact of these mechanisms on the bacterial resistance to fluoroquinolones is still unclear.

The goal of the present study was to investigate the possible role of OmpF-deficiency and active efflux in the development of resistance to hydrophilic or hydrophobic fluoroquinolones by \textit{E coli}.

\textbf{MATERIALS AND METHODS}

\textbf{Fluoroquinolones} Hydrophilic fluoroquinolone ciprofloxacin (CPLX) and ofloxacin (OFLX) were supplied generously by Haime Pharmaceutical Co (Zhejiang, China). Hydrophobic fluoroquinolone tosufloxacin (TSLX) was procured from Sichuan Industrial
Institute of Antibiotics (Chengdu, Sichuan, China). The net contents of these drugs are all above 99%.

Bacterial strains JF701 and JF703 are OmpC- and OmpF-deficient mutants of *E. coli* K-12, respectively. The other *E. coli* strains in the study were isolated by this laboratory. Among them, Ecs was a sensitive strain isolated from a patient with urinary infection and its *in vitro* selected fluoroquinolone-resistant mutants R2, R256 were created by seriallypassaging Ecs through Mueller-Hinton (MH) agar containing increasing concentrations of CPLY, and CPLY was started at one-half the MIC and was doubled thereafter. R2 and R256 demonstrated the target CPLY MIC of 8 and 256 mg/L respectively. CPLY-resistant clinical strains R5, and R6 (having CPLY MIC of 128 mg/L) were isolated respectively from patients with pulmonary and urinary infections. All strains were plasmid-free and DNA sequence of gyrA gene showed that in R256, R5 and R6 point mutation happened at C-248 and G-259.

Chemicals, biochemicals, and media Protein molecular weight markers (Mr = 14.3 – 200); N, N-methylenedisacrylamide and acrylamide were purchased from Life Technologies (Eggenstein, Germany); Sarkosyl and sodium dodecyl sulfate-slab were purchased from Sigma. Tryptone and yeast extract were from Unipath Ltd (England); All other chemicals and biochemicals were at least of analytical grade.

Determination of MIC MIC were determined by the standard method of two-fold antibiotic dilution in agar. Inoculation of 104 – 105 CFU were spotted onto MH agar plates containing fluoroquinolone. MIC were read after 18 h of incubation at 37°C. Fluoroquinolone-sensitivity was identified by break-point (CPLY ≥ 4 mg/L, OPLX ≥ 8 mg/L, TSLX ≥ 2 mg/L indicating resistance) according to National Committee of Laboratory Standards (NCCLS).

Fluoroquinolone accumulation and active efflux Drug accumulation was measured as described by Mortimer and Pidcock. Bacteria were grown in LB broth to an *A*₆₀₀ of 0.6 – 0.8 and harvested by centrifugation. Bacteria were washed once with 50 mmol/L sodium phosphate buffer (pH 7.0) at 4°C, and resuspended in the same buffer at about 40 g (dry weight) of cells per liter. Fluoroquinolone was added to a final concentration of 20 mg/L thereafter. Samples (1.5 mL) were removed at 10, 20, 40 s, 1, 2, 3, 4, 5, 15, and 30 min. Then proton-energy inhibitor DNP, which was prepared as a 20 mmol/L stock solution in 50% ethanol, was added into the bacterial suspension to a final concentration of 2 mmol/L and the same volume samples were removed at 5 and 10 min after cells were treated.

Samples were diluted immediately into 1.5 mL chilled sodium phosphate buffer (pH 7.0), and then centrifuged in a microcentrifuge at 12 000 × g, 4°C, for 5 min. Bacteria were washed again in the same chilled buffer and centrifuged for 5 min. The cell pellet was then suspended in 3.0 mL glycine hydrochloride (0.1 mol/L, pH 3.0) for 2 h at 26°C, and centrifuged at 12 000 × g, for 10 min. The decanted supernatant was centrifuged for another 5 min. Fluorescence of each drug in the final supernatant was then determined at the relevant excitation and emission spectra by a fluorescence spectrophotometer (RF-5000, Shimadzu, Japan). In order to quantify the accumulation of the drug in bacteria, a standard curve of 0.01, 0.05, 0.10, 0.50, 1.00, 1.50, 2.00, 4.00, and 8.00 mg/L of each fluoroquinolone in 3.0 mL glycine hydrochloride (0.1 mol/L, pH 3.0) was prepared and examined simultaneously. The excitation and emission wavelengths for OFLX and TSLX were 296 nm/500 nm and 273 nm/432 nm, respectively.

Analysis of outer membrane proteins (OMP) OMP were prepared by sonic disruption followed by differential extraction with sarkosyl. The protein composition was analyzed by sodium dodecyl sulfate-slab polyacrylamide (12%) gel containing 6 mol/L of urea. Each sample contained 50 μg – 80 μg of protein and was heated at 100°C for 10 min in sample buffer before analysis.

RESULTS

Susceptibility As shown in Tab 1 wild strain Ecs and OmpC-deficient strain JF701 (OmpF+) had almost the same sensitivity to fluoroquinolones. Although OmpF-deficient strain JF703 (OmpC+) was less susceptible than JF701 and Ecs, according to the NCCLS standard.

Tab 1. MIC (mg/L) of fluoroquinolones for *E. coli* strains.

<table>
<thead>
<tr>
<th>E. coli strains</th>
<th>CPLY</th>
<th>OPLX</th>
<th>TSLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecs</td>
<td><0.06</td>
<td><0.06</td>
<td><0.06</td>
</tr>
<tr>
<td>JF701</td>
<td>>0.06</td>
<td><0.06</td>
<td><0.06</td>
</tr>
<tr>
<td>JF703</td>
<td>0.25</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>R2</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>R256</td>
<td>256</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>R5</td>
<td>128</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>R6</td>
<td>128</td>
<td>32</td>
<td>128</td>
</tr>
</tbody>
</table>
(1997), JF703 was still susceptible to fluoroquinolones. On the contrary, the laboratory-derived resistant isolates R2, R256, as well as clinical resistant isolates R5, R6 were resistant to 3 kinds of fluoroquinolones. Furthermore, cross-resistance of fluoroquinolones was observed in this study, since strains R2 and R256 were only obtained by stepwise exposure of its parent strain EcS to increasing concentrations of CFXL.

Fluoroquinolone accumulation and effect of DNP A biphasic pattern of accumulation of both drugs was observed in all 7 strains with an initial rapid phase of accumulation seen within the first 2 min (Tab 2, Fig 1).

Tab 2. Parameters of OFLX accumulation in E coli strains. ± s.

<table>
<thead>
<tr>
<th>E coli strains</th>
<th>Duration of rapid increase/s</th>
<th>Steady-state accumulation concentration/μg·g⁻¹·cells⁻¹</th>
<th>Increase in accumulation after addition of DNP%/5 min</th>
<th>Increase in accumulation after addition of DNP%/10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcS</td>
<td>120</td>
<td>29.88 ± 1.27</td>
<td>64.85</td>
<td>92.19</td>
</tr>
<tr>
<td>JF701</td>
<td>60</td>
<td>38.69 ± 0.75</td>
<td>9.33</td>
<td>16.18</td>
</tr>
<tr>
<td>JF703</td>
<td>60</td>
<td>18.73 ± 1.53</td>
<td>16.96</td>
<td>21.68</td>
</tr>
<tr>
<td>R2</td>
<td>60</td>
<td>5.60 ± 0.35</td>
<td>79.29</td>
<td>271.07</td>
</tr>
<tr>
<td>R256</td>
<td>240</td>
<td>3.27 ± 0.30</td>
<td>185.98</td>
<td>334.25</td>
</tr>
<tr>
<td>R5</td>
<td>120</td>
<td>4.97 ± 0.14</td>
<td>13.08</td>
<td>225.35</td>
</tr>
<tr>
<td>R6</td>
<td>60</td>
<td>5.73 ± 0.17</td>
<td>142.76</td>
<td>189.18</td>
</tr>
</tbody>
</table>

* The mean of concentration accumulated at 900, 1200, and 1800 s.
followed by a steady-state phase. During the latter phase, the level of accumulation of OFLX in wild strain EcS appeared to be the same as in OnmpC-deficient K-12 strain JF701, but about 1/2 to 1/3 reduction in accumulation was observed in OnmpF-deficient strain JF703 than in JF701 or EcS (Tab 2). However, accumulation of OFLX in the resistant strains (R2, R256, R5, and R6) was about 7-fold lower than that in the susceptible strains (EcS, JF701, and JF703) (Tab 3). There was no significant difference in accumulation of TSLX between fluoroquinolone-resistant and -susceptible strains (Fig 1, Tab 3).

Tab 3. Comparison of steady-state concentration of fluoroquinolones accumulated into E coli strains. ± s.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Sensitive a</th>
<th>Resistant b</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofloxacin</td>
<td>29 ± 10</td>
<td>4 ± 1</td>
<td>4.9626</td>
<td>0.0042</td>
</tr>
<tr>
<td>Tornofloxacin</td>
<td>158 ± 35</td>
<td>124 ± 15</td>
<td>1.8270</td>
<td>0.1271</td>
</tr>
</tbody>
</table>

* The mean of concentration accumulated in EcS, JF701, and JF703.
* The mean of concentration accumulated in R2, R256, R5, and R6.

After addition of the proton ionophore DNP at 2 mmol/L for 5 to 10 min, the steady-state level of OFLX was obviously increased, especially in the resistant

Fig 1. Accumulation of tefloxacin in E coli.
strains, whereas the steady-state level of TSLX showed a
little decrease in all 7 strains (Fig 1). A good relevance
between the increment of OFLX accumulation and MIC
for the susceptible and resistant strains was obtained after
addition of DNP for 5 min and 10 min (Relative coef-
cient r were 0.9623 and 0.8006, respectively).

Outer membrane proteins As shown in Fig 2,
wild strain Ecs had both porins OmpF and OmpC, but
porin OmpF-deficiency in R2, R256 (Fig 2, lane c and
lane d) and porin OmpC-deficiency in R5, R6 (Fig 2,
lane a and lane b) were observed.

In this study, accumulation of the relative hydrophobic
TSLX in OmpF-deficient strain JF703 was almost the same
as that in OmpC-deficient strain JF701 (OmpF+ or
wild strain Ecs (OmpF+ OmpC+) (Fig 1). No signifi-
cant difference between the accumulation of TSLX in the
resistant strains (R2, R256, R5, and R6) and suscep-
tible strains (Ecs, JF701 and JF703) was found (Tab 3).
On the contrary, the accumulation of OFLX in the sus-
cetable strains was 5- to 7-fold more than that in the resis-
tant strains (Tab 2), and the accumulation in OmpF-
deficient strain JF703 was only 1/2 to 1/3 less than that
in JF701 and Ecs, respectively (Tab 2). These results
suggested that the OmpF-deficiency could decrease the ac-
cumulation of hydrophobic fluoroquinolones, but had little
effect on the accumulation of hydrophilic fluoroqui-

The analysis of OMP of all 5 isolates of *E. coli* in
the present study only showed that the *in vitro*
selected resistant strains R2, R256 were deficient in porin OmpF
(Fig 2). Considering that well-characterized OmpF-
or OmpC-deficient mutants (JF703 and JF701) were all sus-
ceptible to fluoroquinolones (Tab 1), we postulate that the
absence of porin OmpF may not be an important factor in
the *E. coli* resistance to fluoroquinolones.

Efflux of drug in fluoroquinolone-resistance

Active efflux is proposed as a major mechanism of resis-
tance in antibiotics,[2-4] but its significance in the flu-
oroquinolone-resistant *E. coli* remains to be determined,
especially for the hydrophobic fluoroquinolone. DNP, a
protonophore destroying proton motive force, frequently
used in the examination of drug active efflux, could in-
crease intracellular accumulation of fluoroquinolone by
inhibiting the action of active efflux system.

Upon the addition of DNP, it was surprising that a
slow decrease in accumulation of TSLX was observed in
both susceptible and resistant strains, indicating that
active efflux mechanism has little influence on its intracellu-
lar accumulation. In contrast, almost 7 strains in the
study have shown active efflux of OFLX (Tab 2). The
phenomenon of active efflux of OFLX in strain Ecs indi-
cated that active efflux system might be a normal struc-
tural feature of *E. coli*. Furthermore, we also observed
that the accumulation of OFLX increased dramatically in
the resistant strains (Tab 2). The increment in OFLX
accumulation was significantly relative to its MIC for both
susceptible and resistant strains. These data showed that
the enhancement of active efflux system was consistent
with the increase of fluoroquinolone-resistant levels of
bacteria, since the external concentration of OFLX in this

![Figure 2](image-url)

Fig 2. SDS-PAGE electrophoresis of outer membrane proteins (Omp). Each lane indicated Omp from one strain: a: R6; b: R5; c: R256; d: R2; e: MW marker; f: Ecs; g: JF701; h: JF703.

DISCUSSION

Absence of porin OmpF in fluoroquinolone-
resistance The high percentage of the maximum con-
centration of both fluoroquinolones accumulated by
the end of the initial rapid phase indicates that fluoroqui-

新区ews accumulation into *E. coli* is a rapid process
(Tab 2, Fig 1) and this results have also been previously
observed in a number of quinolones in *E. coli*.[11] Some
studies have found that fluoroquinolones accumulation in

laboratory-derived porin OmpF-deficient strains decreases
2- to 5-fold compared to that before the OmpF-deficiency
and the cause of this decrease can be attributed only to the
OmpF-deficiency.[11]

1. Toa, K. et al. (2023). Acta Pharmacol Sin. 2001 Mar; 22(3). ISSN 0253-7756. E-mail aps@mail.shenc.ac.cn. Print/Fax 86-21-6747-2629.
study was constant (20 mg/L, see methods). Thus, the efflux mechanism may play an important role in E. coli resistance to the hydrophilic fluoroquinolone other than resistance to the hydrophobic fluoroquinolone.

It appears very likely that active efflux system observed in this study is encoded by chromosomal genes because all strains we used were plasmid-free. Such chromosomally encoded fluoroquinolone efflux mechanism may be widespread in the bacterial world. Although our data demonstrates that an active efflux mechanism exists for the hydrophilic fluoroquinolone, the identity of this putative system remains to be established.

ACKNOWLEDGMENTS We are grateful to Li Xian-Zhi for providing control strains (JF701, JF703, and ATCC25922) and ZHU Shu-Yuan, YU Ru-Jia for assistance with isolation of laboratory-selected fluoroquinolone-resistant mutants. We also thank Prof. ZHAO Lian-San for helpful discussion and Prof. WANG Yu-Sheng, BAO Ding-Yuan for their encouragement.

REFERENCES
