Urethane-induced hyperglycemia

WANG Min-Yan2, REN Lei-Ming3, DU Zhan-Jiang4, FU Shao-Xuan
2Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, 3Hebei Pharmaceutical Inspection Institute, Shijiazhuang 050011, 4Shijiazhuang Pharmaceutical Inspection Institute, Shijiazhuang 050051, China

KEY WORDS urethane, blood glucose, insulin, epinephrine, alloxan, fasting

ABSTRACT

AIM To study the effects of urethane at anesthetic dose on the blood glucose levels in normal rats and hyperglycemic rats and its effects on the hypoglycemic action of exogenous insulin in alloxan-treated rats.

METHODS Blood glucose concentration was measured with the glucose oxidase method.

RESULTS Urethane at anesthetic dose 1.5 g kg\(^{-1}\) increased the blood glucose levels in fasting rats to 2.6 ± 0.3 g L\(^{-1}\) \(P < 0.01\) or glucose-loaded rats to 3.9 ± 0.4 g L\(^{-1}\) \(P < 0.01\) rats. It did not modify the hyperglycemia induced by epinephrine normal islet \(\beta\)-cells or alloxan impaired islet \(\beta\)-cells. In the rats treated with alloxan blood glucose level decreased to 1.8 ± 0.7 g L\(^{-1}\) at 200 min after administration of insulin from control level of 7.0 ± 2.3 g L\(^{-1}\) but the hypoglycemic action of exogenous insulin was abolished by urethane.

CONCLUSION

Hyperglycemic action of urethane was due to its inhibiting effect on the hypoglycemic effect of insulin except for its known mechanism of increased sympathetic release.

INTRODUCTION

Urethane has been widely used as a long-term anesthetic for small experimental animals because it does not influence the central nervous system involved in the control of cardiovascular functions as compared with other anesthetics and the peripheral stimuli are still able to activate CNS and produce reflex changes in autonomic functions in urethane-anesthetized animals. In some diabetic experiments animals were anesthetized by barbiturate or urethane to avoid the influence of local damage and stress of collecting blood samples on the blood glucose level of the animals. It was reported however that urethane increased blood glucose levels in rats and rabbits but barbiturate at anesthetic dose did not induce hyperglycemia. Urethane-induced hyperglycemia in the rat was prevented by hypophysectomy, bilateral adrenalectomy, receptor antagonist yohimbine or reserpine. Reinfert speculated that increased sympathetic activity led to enhanced catecholamine secretion from the adrenal medulla which in turn regulated the concentration of blood glucose. On the other hand there were some studies indicating that urethane-induced hyperglycemia in the cat was independent of liver glycogen levels and epinephrine release and significant increase of the blood glucose levels by urethane was observed in fasting rats but not in fed rats. The present study was designed to investigate the effects of urethane at anesthetic dose on blood glucose level in fasting or glucose loaded rats in alloxan-induced hyperglycemic rats impaired islet \(\beta\)-cells or epinephrine-induced hyperglycemic rats normal islet \(\beta\)-cells. Effects of urethane on the hypoglycemic action by exogenous insulin were also observed in alloxan-treated rats.

MATERIALS AND METHODS

Chemicals Urethane Sigma Chemical Co and epinephrine hydrochloride Wuhan Pharmaceutical Corporation were dissolved in normal saline at concentrations of 250 g L\(^{-1}\) and 0.05 g L\(^{-1}\) respectively. Blood glucose kit was the product of Shijiazhuang Reagent Factory. Insulin Chinese Pharmaceutical Inspection Institute was dissolved in normal saline at concentration of 0.05 g L\(^{-1}\).

Rats Sprague-Dawley rats weighing 210 ± 30 g were provided by Experimental Animal Center of Hebei Medical University. Grade II Certificate No 035. All animals were fed for a week in laboratory before...
experiment and fasted 24 h before blood samples were collected from orbital vein.

Blood samples and blood glucose measurement
Blood samples were collected from the orbital vein using heparin-containing glass capillaries. Blood was centrifuged to separate the plasma and glucose was measured immediately after separation using glucose oxidase method[17].

Fasting rat
Sixteen rats were divided into two groups. One group was treated with urethane (0.75 g kg⁻¹ ip and 0.75 g kg⁻¹ sc[18]). The other group was treated with saline as control. Blood samples were collected before and 20 min after urethane and saline.

Glucose tolerance test
Sixteen rats were divided into two groups. They were treated with urethane and saline respectively and then treated with intragastric glucose (5 g kg⁻¹). Blood samples were collected before and 20 min after urethane and saline.

Epinephrine-induced hyperglycemic rats
Sixteen rats were divided into two groups which were treated with urethane and saline respectively and both groups were treated with sc epinephrine at 0.2 mg kg⁻¹ simultaneously. Blood samples were collected before and 20 min after treatment.

Alloxan-induced hyperglycemic rats
Rats were injected with alloxan (0.25 g kg⁻¹ ip) and the blood samples were collected in 48 h. Rats whose blood glucose levels were 5 mm lower than those before treatment were used as hyperglycemic rats. Sixteen hyperglycemic rats were divided into two groups to whom urethane and saline were injected respectively. Another sixteen hyperglycemic rats were divided into two groups to observe the effects of urethane and saline on the hypoglycemic action of exogenous insulin. Exogenous insulin was given at 4.5 IU kg⁻¹ sc immediately after urethane and saline. Blood samples were collected before and 40, 80, 140, and 200 min after administration of urethane or both urethane and exogenous insulin.

Statistical methods
Data were expressed as x ± s. and two way ANOVA was used to evaluate the significance between the date of control and treatment groups. If the F statistic value was significant we compared the individual datum with its respective control value using t-test. P values less than 0.05 were considered statistically significant.

RESULTS

Effects of urethane on the fasting rat
Blood glucose levels did not change during the experimental period in the control animal. However, urethane caused an obvious increase in blood glucose level and the blood glucose increased 50 min after administration of urethane 1.5 g kg⁻¹ P < 0.01[Tab 1]. The peak level of blood glucose in the rat treated with urethane was 2.1 times higher than that in the control animal P < 0.01[Tab 1].

Effects of urethane on the glucose-loading rats
Blood glucose level increased 30 min after intragastric glucose in the control group and its peak time was 2 l[Tab 1].

Urethane 1.5 g kg⁻¹ P < 0.01 increased the

Tab 1. Effects of urethane on the blood glucose level in the rat. n = 8 rats. x ± s. *P > 0.05 #P < 0.01 vs control.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dosage/g kg⁻¹</th>
<th>0</th>
<th>20</th>
<th>Blood glucose/g L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>Fastigating rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>0.80 ± 0.06</td>
<td>0.82 ± 0.06</td>
<td>0.76 ± 0.04</td>
</tr>
<tr>
<td>Urethane 1.5</td>
<td>1.5</td>
<td>0.79 ± 0.07</td>
<td>0.89 ± 0.11</td>
<td>1.5 ± 0.47</td>
</tr>
<tr>
<td>Glucose-loaded rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>0.81 ± 0.06</td>
<td>0.84 ± 0.11</td>
<td>1.76 ± 0.28</td>
</tr>
<tr>
<td>Urethane 1.5</td>
<td>1.5</td>
<td>0.82 ± 0.06</td>
<td>0.89 ± 0.11</td>
<td>3.9 ± 0.4</td>
</tr>
<tr>
<td>Hyperglycemic rat induced by epinephrine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>0.81 ± 0.08</td>
<td>1.21 ± 0.15</td>
<td>1.84 ± 0.27</td>
</tr>
<tr>
<td>Urethane 1.5</td>
<td>1.5</td>
<td>0.84 ± 0.08</td>
<td>1.32 ± 0.20</td>
<td>1.84 ± 0.09</td>
</tr>
<tr>
<td>Hyperglycemic rat induced by alloxan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>9.2 ± 1.6</td>
<td>9.4 ± 1.5</td>
<td>10.3 ± 1.8</td>
</tr>
<tr>
<td>Urethane 1.5</td>
<td>1.5</td>
<td>9.5 ± 2.5</td>
<td>10.3 ± 3.2</td>
<td>10.1 ± 2.4</td>
</tr>
</tbody>
</table>
levels of blood glucose 0.5% 1% 2% and 3 h after i g glucose by 125 % 83 % 60 % and 68 % respectively compared with the control group \(\text{Tab 1} \).

Effects of urethane on epinephrine-induced hyperglycemia The levels of blood glucose were increased 20% 50% 80% 140% and 200 min after administration of epinephrine \(\text{P} < 0.01 \) in the control group \(\text{Tab 1} \). Urethane treatment did not affect the hyperglycemic action of sc epinephrine \(\text{P} > 0.05 \) Tab 1).

Effects of urethane on alloxan-induced hyperglycemia The levels of blood glucose increased to 9.34 ± 2.05 mg/L \(n = 16 \) 48 h after ip alloxan\(\text{P} < 0.01 \) Tab 1 and the blood glucose level decreased to 1.8 ± 0.7 \(\text{g L}^{-1} \) at 200 min after administration of insulin from pretreatment level of 7.0 ± 2.3 \(\text{g L}^{-1} \). Urethane suppressed the hyperglycemic action of exogenous insulin.

DISCUSSION

Urethane at anesthetic dose increased the blood glucose levels in glucose loading rats however it did not modify the hyperglycemia induced by epinephrine or alloxan. Besides we observed that hypoglycemic action of exogenous insulin was obviously inhibited by urethane in the rat treated with alloxan. These results demonstrated that urethane-induced hyperglycemia was at least partly due to its inhibitory effect on the hypoglycemic effect of insulin except for its known mechanism of increasing sympathetic discharge \(\text{8}[\text{13,14]} \).

In the present study urethane increased blood glucose concentration in fasting rats but it did not affect that animals treated with phenobarbital sodium at anesthetic dose of 0.1 g kg\(^{-1}\) data not shown. We reconfirmed that anesthetic condition itself did not affect blood glucose levels obviously in the rats \(\text{10}[\text{13,14}] \). Urethane further increased the blood glucose concentration in glucose loaded rats which might be explained with both mechanisms of an enhanced release of epinephrine \(\text{9}[\text{13,14}] \) and an inhibitory action on the effects of endogenous insulin.

It is well-known that epinephrine produces hyperglycemia via both stimulation of hepatic gluconeogenesis and inhibition of insulin release from the islets of Langerhans \(\text{19,20} \). An epinephrine-induced hyperglycemia was observed in this experiment however urethane did not further increase the levels of hyperglycemia induced by epinephrine. Marley and Paton \(\text{21} \) reported that urethane releases catecholamines within a limited and physiological range and the exogenous epinephrine decreases the secretion of insulin \(\text{19,20} \). These reports could provide a rational explanation for the ineffectiveness of urethane in the rat treated by epinephrine. Islet \(\beta \)-cells were impaired by alloxan and had lost their function of secretion insulin mostly which resulted in hyperglycemia \(\text{20} \). The present data showed that alloxan produced a much higher increase in blood glucose levels in comparison with that in urethane-treated normal rats. Therefore urethane treatment could not cause a further rise in the blood glucose levels in alloxan-treated rats.

The main conclusion that urethane-induced hyperglycemia was at least partly due to the inhibition of the hypoglycemic effect of insulin by urethane was also supported indirectly by two previous observations.

Tab 2. Effects of urethane on the hypoglycemic action of exogenous insulin \(4.5 \text{IU kg}^{-1} \) sc \(\text{P} < 0.05 \) P < 0.05 \(\text{P} < 0.01 \) vs before insulin.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dosage/ g kg(^{-1})</th>
<th>0</th>
<th>20</th>
<th>50</th>
<th>80</th>
<th>140</th>
<th>200 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>–</td>
<td>7.0 ± 2.3</td>
<td>4.9 ± 1.4</td>
<td>4.1 ± 1.4</td>
<td>3.7 ± 1.2</td>
<td>3.13 ± 0.11</td>
<td>1.8 ± 0.7</td>
</tr>
<tr>
<td>Insulin + urethane</td>
<td>1.5</td>
<td>6.9 ± 2.4</td>
<td>7.0 ± 2.0</td>
<td>6.4 ± 2.3</td>
<td>6.1 ± 2.9</td>
<td>5.9 ± 3.0</td>
<td>4.7 ± 2.6</td>
</tr>
</tbody>
</table>
Sollman16 reported that urethane-induced hyperglycemia in the cat was independent of epinephrine release16 and Sanchez Pozo et al9 showed that a decrease in the consumption of glucose and an increase in lipolysis occurred in urethane-anesthesia rats. Further experiments are needed to investigate which steps are involved in the inhibitory effects of urethane on the hypoglycemic action of insulin with respect to glucose metabolism. In any case, the effects of urethane anesthesia on rats should be considered in physiological or pharmacological studies particularly in metabolic studies.

REFERENCES

12 Spriggs TL. The effects of anesthesia induced by urethane or phenobarbitone upon the distribution of peripheral catecholamines in the rat. Br J Pharmacol 1965; 24: 752 – 8.

乌拉坦诱导的高血糖反应

王旻艳，任雷鸣，杜战江，傅绍萱（河北医科大学药理学教研室，石家庄；河北省药品检验所，石家庄；石家庄市药品检验所，石家庄，中国）

关键词 乌拉坦；血糖；胰岛素；肾上腺素；四氧嘧啶；禁食

目的：观察麻醉剂量的乌拉坦对空腹大鼠、葡萄糖负荷大鼠，肾上腺素或四氧嘧啶诱发高血糖大鼠血糖水平的影响，并探讨其对外源性胰岛素降血糖作用的影响

方法：葡萄糖氧化酶法测定血糖含量

结果：麻醉剂量乌拉坦显著升高空腹大鼠和葡萄糖负荷大鼠的血糖水平，但对肾上腺素（胰岛功能正常）或四氧嘧啶（胰岛功能受损）诱发的高血糖大鼠的血糖水平无明显影响（在四氧嘧啶诱发的高血糖大鼠，乌拉坦显著对抗外源性胰岛素的降血糖作用）

结论：乌拉坦升高血糖的作用除与已知的释放肾上腺素有关外，抑制胰岛素的降血糖作用也是其升高血糖的机制之一

（责任编辑 李颖）