Effects of dihydroartemisinin on fine structure of erythrocytic stages of
Plasmodium berghei ANKA strain

CHEN Pei-Quan¹ YUAN Jie DU Qiao-Yun CHEN Lin LI Guo-Qiao
Tropical Medicine Institute Guangzhou University of Traditional Chinese Medicine Guangzhou 510405 China
HUANG Zhen-Yan YANG Dong-Di WU Ling-Ni Department of Electron Microscopy Guangzhou University of
Traditional Chinese Medicine Guangzhou 510405 China

KEY WORDS dihydroartemisinin Plasmodium berghei
ANKA strain electron microscopy

ABSTRACT

AIM The fine structural changes of Plasmodium berghei
ANKA strain after treatment with the dihydroartemisinin
DATM were observed. METHODS DATM 180
mg kg⁻¹ d⁻¹ was given ig to outbred NIH mice infected with
P. berghei ANKA strain. Blood samples were
collected embedded and examined by electron
microscopy. RESULTS In P. berghei ANKA strain
1 h after drug administration the parasites food vacuole
membranes were destroyed and the pigment grains showed
some changes. The nucleus membrane cytomembrane
and food vacuole membranes were stratified 2 h after
administration. At the same time swelling and separation
of the outer and inner membrane or shrinking of the
mitochondria were seen. Stripped nuclear and cytoplasm
membrane were developed and vacuolizations were seen 4 h
later. Eight hours after administration a large number of
parasite structures were destroyed except for a few parasite
autophagic vacuoles. CONCLUSION DATM was a fast-
acting and effective antimalarial drug. Its primary target
is the membrane system. No obvious resistant
characteristics were found upto 24 generations after
resistant induction test for 4 months.

INTRODUCTION

Dihydroartemisinin DATM is one of the derivatives of
artemisinin that is an antimalarial with unique
component isolated from the wormwood Artemisia annua L

1 Correspondence to Dr CHEN Pei-Quan.
Phn 86-20-8659-1233 ext 2422 Fax 86-20-8637-3516.
E-mail doczhang@163.net
Received 1999-04-06 Accepted 1999-08-24

a traditional Chinese herb. It has a marked activity
against chloroquine-resistant strains of Plasmodium
falciparum. It can quickly kill asexual forms of P.
falciparum and has a remarkable effect on P.
falciparum gametocytes. For further study on the
mechanism of DATM on erythrocytic malaria parasites the
fine structure changes of P. berghei ANKA strain were
observed.

MATERIALS AND METHODS

Materials P. berghei ANKA line was introduced from
National Institute of Health NIH USA and its
DATM resistant line was induced with DATM for 24
generations during a 4-month period study in our
laboratory. Its resistant index R_{50} was 12.9-fold and
its inducing dose was 109.4 MKD × 3 d. NIH mice
weighing 18 ~ 22 g were provided by the Laboratory Animal
Center of Guangzhou University of Traditional Chinese
Medicine Guangdong Provincial Medical Animal License
26-97009. DATM Batch No 970701 was the product
of Beijing 6th Pharmaceutical Factory.

Methods Referring to a previous report mice were
inoculated with 1 × 10³ P. berghei ANKA or its
resistant line infected erythrocytes. The mice infected
with P. berghei ANKA strain were given DATM in a
single dose of 180 MKD × 1 d as the total dose of ED_{50} ×
4 d when the parasitaemia reached about 20 % 3~4
drops of blood were taken at 0 h before treatment 1 h
2 h
4 h and 8 h after treatment. In its resistant line the blood
was taken 7 d later with 20 % parasitaemia. The blood
was dropped into a small glass bottle. After blood
coagulation the samples were fixed with 3 %
glutaraldehyde for 5 ~ 10 min then cut into squares of 1
mm² and fixed for about 1 h continuously and washed with
buffer 3 times Each time for 15 min. After 1 h the samples were fixed by 1.5 % osmic acid dehydrated with
acetone embedded in epoxy resin and then polymerized.
in constant temperature desiccator 24 h at 35 °C then 48 h at 60 °C. After ultra-thin sectioning the samples were dyed with uranium acetate and plumbum citrate. It was examined with JEM-1200EX electron microscopy.

RESULTS

The effects of DATM on the fine structural changes of the erythrocytic stage of P. berghei ANKA strain were as follows

One hour after medication the food vacuole membranes were destroyed and the form of pigment grains were sharply defined. The distribution of ribosome was uneven and vacuolations were seen Fig 1 B. [1].

Two hours after medication the nuclear membranes cytomembranes and food vacuole membranes were still clear. Swelling and separation of the outer and inner membranes or shrinking mitochondria were seen. The forms of pigment grain were short and diffused. Multilaminated cytomembrane and broadened space of the outer and inner cytomembrane were obvious Fig 1 C – E. [2,3]

Four hours after medication stripped nucleomembrane and cytomembrane stratified nucleomembrane thickened mitochondria membrane uneven ribosomes and cytoplasmic vacuolization were seen Fig 1 F. [4,5,6]

Eight hours after medication a large number of parasite appeared disintegrated and degenerated forming a number of parasitic autophagic vacuoles of varying sizes within the red blood cells. Valgus nucleaepores were occasionally seen in the parasites Fig 1 H. [7,8].

In short the main effects of DATM on fine structure of erythrocytic stage of P. berghei ANKA strain were as follows 1 the food vacuole membranes mitochondria membranes and cytomembranes were progressively changed 2 enlarged mitochondria broadened space of the outer and inner food vacuole membranes and cytomembranes or whorled formation were seen 3 malaria parasites were destroyed. The destroyed structure and several autophic vacuoles were found in the slide.

It was observed that the resistant line only contained stratified food vacuole membranes and cytomembranes broadened space of membranes uneven ribosomes and metamorphic pigments Fig 1 J - L. [9,10].

DISCUSSION

Research Group [1979] [5] has reports that artesminin primarily causes membranous changes which take place at the food membrane limiting membrane mitochondria membrane nuclear membrane and endoplasmic reticulum and finally autophagic vacuoles are formed the parasite loses a lot of cytoplasm then degenerates and eventually dies. This study indicates that DATM destroyed fine structure of parasite rapidly and its destructive ability was stronger than that of artesminin. The activities were very significant from 1 h after treatment. A large number of parasites were destroyed after 8 h at that time only a few trophozoites autophagic vacuoles were observed. The experiments showed that the prominent pathological changes induced by DATM were injuries to the membrane structure of the parasite such as swelling of intermembranous spaces of limiting membranes mitochondrial membranes nuclear membranes and the membranes of food vacuoles. Similar morphological changes were also induced by artesminin. Since the food vacuole membranes were affected the nutrition of parasites was blocked and the autophagic vacuoles formed quickly as a result of amino-acid hunger of parasites. The parasites died because of lost cytoplasm [2] DATM could affect the mitochondria of P. berghei ANKA strain and on this point the results were different from those obtained by using P. falciparum. As we knew no appreciable damage appeared in the mitochondrial membranes of P. falciparum. It is recognized that the mitochondrion of P. falciparum is morphologically different from that of P. berghei in that the former contains microtubular cristae while the latter does not. The morphological difference between the two species of parasite could account for their difference in mitochondrial sensitivity to DATM. As Howell [1973] [6] reported that mitochondria of rodent malaria parasite has cytochrome oxidases hence the antimalarial action of DATM can be explained by its interference with the function of mitochondria membrane.

Another characteristic of DATM is its short half-life t 1/2 only 1.5 – 2 h. So this study shows that although P. berghei ANKA strain had been induced with DATM for 4 months and passing blood transmission for 24 generations but the resistant index RI was only 12.9-fold and a few morphological changes such as some thickened membrane of food vacuole cytoplasm and mitochondria broadened space of membrane uneven ribosome and metamorphic pigment were seen. According to the fine structural changes it might be concluded that the P. berghei ANKA strain had no obvious resistance to DATM.
Fig 1. Electron micrographs of trophozoites of P. berghei ANKA strain from blood of mice treated with oral dihydroartemisinin 180 MKD × 1[] B- I [or trophozoites of its resistant line] J-K [and untreated trophozoite] A[]. B Trophozoite after 1 h [the stripped nucleomembrane [→ ] and cytoplasmic vacuolization [V]]. C D Trophozoites after 2 h [the stratified cytomembranes [nucleomembranes] food vacuole membranes [and mitochondria membranes. [→ ]]. E Trophozoite after 2 h [the change of membrane systems and the forms of pigment grains. [P]→ ]. F G Trophozoites after 4 h [the stratified and stripped nucleomembranes [the uneven ribosomes and the cytoplasmic vacuolization [V]]. H I Trophozoites after 8 h [the nucleomembrane and cytomembrane stripped the cytoplasmic vacuolization and the valgus nucleopores formed [→ ]]. J K The ring form of P. berghei ANKA strain that was induced with DATM for 24 passages. The food vacuole membrane was stratified. [→ ]. K The trophozoite after inducing with DATM for 24 passages. The broadened space membranes were seen [→ ]. L The trophozoite after inducing for 24 passages with DATM containing metamorphic pigments [P]. A C D E G H J × 25 000 B L × 15 000 F × 20 000 I × 30 000 K × 40 000

REFERENCES
双氢青蒿素对伯氏疟原虫株超微结构的影响

陈沛泉, 袁 捷, 杜巧云, 陈 林, 李国桥 (广州中医药大学热带医学研究所, 中国)
黄真炎, 杨冬娣, 吴玲霓 (广州中医药大学电镜室, 广州, 中国)

关键词 双氢青蒿素; 伯氏疟原虫株; 电子显微镜检查

目的: 观察双氢青蒿素对伯氏疟原虫株超微结构的影响

方法: 双氢青蒿素和分别给受染小白鼠灌胃, 定时取血进行红内期虫体电镜观察

结果: 在伯氏疟原虫株:食物泡膜被破坏, 疟色素有些变形; 核膜、质膜和食物泡, 线粒体明显肿胀或皱缩, 内外膜剥离; 核膜、质膜剥离加剧, 空泡形成; 少数滋养体仅存自噬泡, 大部分原虫结构被破坏 (试图培育的伯氏疟原虫抗株, 仅见食泡膜和质膜明显分层, 膜间隙增厚, 核糖体分布不均匀, 疟色素稍有变形等)

结论: 双氢青蒿素是高效、速效的抗疟药, 主要作用于原虫表膜—线粒体系统 (抗性培育虽经多个月血传4代, 但并未形成明显的抗药性的形态特征)

(责任编辑: 刘俊娥)