Effect of hemin in treating hemorraghic anemia and toxicity

YOU Kai-Shao, WU Bin, HUANG Zi-Qiang, ZHANG Chen, PAN Lin-Jin, Wu Guo-Tu, ZHAO Zi-Qing, HUANG Miao-Hui (The 1st affiliated hospital, 1Department of Pharmacology, Fujian Medical College, Fuzhou 350005;
2Department of Biochemistry, Fujian Medical Science Institute, Fuzhou 350003, China)

KEY WORDS hemin; hypochromic anemia; toxicity; Sprague-Dawley rats; inbred ICR mice

AIM: To study the effect of hemin in treating hemorraghic anemia and toxicity. METHODS: Fifty rats with hemorraghic anemia were randomly divided into 5 groups with different dosage of hemin (93, 168, 300 mg·kg⁻¹·d⁻¹), ferrous gluconate (FG 300 mg · kg⁻¹ · d⁻¹), and water, ig for 7 d. Twenty mice fed with hemin (6.0 g · kg⁻¹ · d⁻¹) in 24 h for observing acute toxicity effects. Long-term toxicity were observed in 80 rats given hemin (0.65, 1.3, 2.6 g · kg⁻¹ · d⁻¹) in 3 months. RESULTS: Hb of the rats of corresponding groups were 66→121, 71→141, 66→148, 69→140, and 67→112 g · L⁻¹. There were no adverse effects observed on acute toxicity test. No abnormalities were found in hemogram, liver renal function test, and autopsy. CONCLUSION: Hemin had a better effect than FG and no adverse effect was found in hemin.

MATERIALS AND METHODS

实验用 SD 大鼠 120 只, ICR 小鼠 20 只购自上海 Sipper-BK 实验动物供应有限公司（清洁级），并在福建医学院基础动物实验室饲养（闽医动条 920007）。大鼠体重 104±6 g, 小鼠体重 20.0±2.0 g, 均为早番各半。

氯化血红素是以新鲜猪血 _ . 血凝块 _ . 血红蛋白 (Hb) 液 _ . 绒缓加入到热 HAc-NaCl 液中 _ . 氧化血红素液体 _ . 沉淀 _ . 乙酸洗、水洗、乙醇洗及干燥 _ . 成品为黑色粉末, 纯度>95%: Uv 吸收光谱分析与美国 Sigma 公司 hemin 一致。Ph<48.3 nmol · L⁻¹. As <133.5 nmol · L⁻¹. 葡萄糖酸亚铁 (ferrous gluconate, FG) 为广西梧州制药厂产品, 每支 10 mL, 含 FG 300 mg.

抗贫血效果 大鼠 50 只, 按性别、体重分成 5 组, 断尾放血 0.3 mL · kg⁻¹, 测定失血量, 失血后 24 h 血红蛋白。A 组为对照组, 予水灌胃, B 组为阳性对照组, 予 FG 灌胃, 剂量均为 0 mL · kg⁻¹ · d⁻¹; C, D, E 组为实验组, 予 hemin 灌胃, 剂量分别为 93, 168, 300 mg · kg⁻¹ · d⁻¹, 各组均每日灌胃 1 次, 连续 7 d. 于 d 8 复查 Hb。用氯化高铁氰化法测定(721 型分光光度计)。

急性毒性试验 限度试验小鼠 20 只, 用 hemin 60 g
L-1，每次1 mL容量多次灌胃在24 h内给6 g·kg⁻¹，而
后观察7 d。

长期毒性试验 大鼠80只，按性别，体重随机分成4
组，I组为对照组，予水灌胃，剂量10 mL·kg⁻¹·d⁻¹；II，
III. IV组为给药组，分别给予hemin0.65，1.3，2.6 g·
kg⁻¹·d⁻¹，每日一次灌胃，连续给药3个月。观察一般表
现，每月测量体重一次，疗程结束后检查血常规，肝功
能，肾功能，并活杀取心，肺，肝，脾，肾，胃，小肠，
子官等组织及淋巴结进行病理检查。

RESULTS

抗贫血效果 治疗后，各hemin治疗组Hb均
高于给水组(P<0.01)；300 mg·kg⁻¹·d⁻¹ hemin
治疗组Hb高于FG组(P<0.05)，168 mg
·kg⁻¹·d⁻¹ hemin治疗组Hb与FG组相近(P>
0.05) (Tab 1)。

急性毒性试验 hemin灌胃后，小鼠活动正
常，食量无改变；体重增加2.43±0.85 g。无
死亡。

长期毒性实验 给药后活动正常，食量无改
变，各组给药前后体重与对照组比较，均无显著差
异(P>0.05) (Tab 2)。IV组血小板数高于对
照组(P<0.05)，II组红细胞计数低于对照组(P
<0.05)；但是，各组值均在正常范围。 治疗三
个月后，各组丙氨酸转氨酶，总蛋白，胆汁酸，
总胆固醇，血糖，尿素氮均在正常范围。各剂量
hemin组与给水组比较，均无明显差异(P均>
0.05) (Tab 3)。

病理检查发现 IV组1只大鼠肺泡炎性细胞
堆积，支气管周围淋巴结细胞包绕，肝细胞浊肿，
汇管区炎症细胞浸润，肾小球毛细血管充血，肾

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose/</th>
<th>Iron/</th>
<th>Before</th>
<th>After</th>
<th>After</th>
<th>Enhancement/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg⁻¹·d⁻¹</td>
<td>mg·kg⁻¹·d⁻¹</td>
<td>bleeding</td>
<td>bleeding</td>
<td>treatment</td>
<td>%</td>
</tr>
<tr>
<td>A Water</td>
<td>10 mL</td>
<td></td>
<td>129 ± 7</td>
<td>67 ± 9</td>
<td>112 ± 9</td>
<td>45 ± 5</td>
</tr>
<tr>
<td>B FG</td>
<td>300 mg</td>
<td>38</td>
<td>128 ± 5</td>
<td>69 ± 16</td>
<td>140 ± 5'</td>
<td>71 ± 7</td>
</tr>
<tr>
<td>C Hemin</td>
<td>93 mg</td>
<td>7.6</td>
<td>128 ± 6</td>
<td>66 ± 11</td>
<td>121 ± 10'd</td>
<td>55 ± 3'd</td>
</tr>
<tr>
<td>D Hemin</td>
<td>168 mg</td>
<td>14</td>
<td>128 ± 7</td>
<td>71 ± 10</td>
<td>141 ± 6*</td>
<td>69 ± 5</td>
</tr>
<tr>
<td>E Hemin</td>
<td>300 mg</td>
<td>25</td>
<td>128 ± 5</td>
<td>66 ± 10</td>
<td>148 ± 3'</td>
<td>81 ± 10*</td>
</tr>
</tbody>
</table>

Tab 2. Weight (mg) of rats on 3 months of hemin. x ± s.
*P<0.05 vs water group.

DISCUSSION

本组资料中，各剂量的氯化血红素对失血性
贫血大鼠均有明显的治疗作用，并呈量效关系。
由于氯化血红素分子量大，本文中，D组(每天实
际给元素铁14 mg·kg⁻¹)的疗效就与FG组(每天
实际给元素铁38 mg·kg⁻¹)相似；E组(每天实际
给元素铁25 mg·kg⁻¹)的疗效明显优于FG组，
而C组(每天实际给元素铁7.6 mg·kg⁻¹)尽管疗
效不如FG组，但每天所给元素铁量仅为FG组的
1/5量，已可使贫血大鼠的Hb水平显著升高，治
疗后Hb明显高于给水组。 因此可以认为氯化血
红素治疗贫血的效果优于葡萄糖酸亚铁。 本文实
验结果发现无法测出氯化血红素的口服半数致死
量；进行限度试验，24 h内给予氯化血红素6 g
·kg⁻¹灌胃，未见毒副反应。与文献报告的临床推
荐用量1.5 g·d⁻¹比较(9)，按体重计算超过200
倍，提示氯化血红素口服无毒性作用。长期毒性
试验发现：连续三个月予大剂量氯化血红素灌胃，
大鼠活动仍正常，食欲良好，体重继续增长，血象
Tab 3. Change of hemogram, liver and renal function test in rats. $n = 20$, $x \pm s$. $P < 0.05$ vs water group.

<table>
<thead>
<tr>
<th></th>
<th>Water/$Hb/g\cdot L^{-1}$</th>
<th>Hemin/$10\times 10^{-10} \times RBC/L^{-1}$</th>
<th>Hemin/$10\times 10^{-8} \times RBC/L^{-1}$</th>
<th>Hemin/$10\times 10^{-9} \times WBC/L^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil/%</td>
<td>6.2 ± 1.7</td>
<td>7.2 ± 2.8</td>
<td>10.9 ± 2.6</td>
<td>12 ± 3</td>
</tr>
<tr>
<td>Lymphocyte/%</td>
<td>93.2 ± 1.7</td>
<td>93 ± 3</td>
<td>89 ± 4</td>
<td>87 ± 6</td>
</tr>
<tr>
<td>Eosinophil/%</td>
<td>0.6 ± 0.8</td>
<td>0.2 ± 0.4</td>
<td>1.0 ± 1.6</td>
<td>0.2 ± 0.4</td>
</tr>
<tr>
<td>AAT/µL/L</td>
<td>14.2 ± 2.5</td>
<td>10.2 ± 2.0</td>
<td>14.4 ± 0.8</td>
<td>10.6 ± 1.5</td>
</tr>
<tr>
<td>TP/µg/L</td>
<td>65 ± 5</td>
<td>61 ± 2</td>
<td>62 ± 3</td>
<td>63 ± 4</td>
</tr>
<tr>
<td>Alb/µg/L</td>
<td>42 ± 6</td>
<td>41 ± 5</td>
<td>40 ± 4</td>
<td>37 ± 2</td>
</tr>
<tr>
<td>Tlβ/µmol/L</td>
<td>4.6 ± 0.8</td>
<td>3.9 ± 0.9</td>
<td>4.9 ± 0.6</td>
<td>3.9 ± 0.3</td>
</tr>
<tr>
<td>Cr/µmol/L</td>
<td>69 ± 10</td>
<td>53 ± 12</td>
<td>71 ± 11</td>
<td>75 ± 4</td>
</tr>
<tr>
<td>BuN/µmol/L</td>
<td>4.8 ± 1.3</td>
<td>4.6 ± 0.2</td>
<td>4.8 ± 0.5</td>
<td>4.9 ± 0.6</td>
</tr>
</tbody>
</table>

检查、肝、肾功能以及15个脏器组织检查未见明显异常，其剂量按体重计算，最大剂量已超过临床推荐用量87倍，说明长期使用氯化血红素是极为安全的，无任何毒副反应。

REFERENCES