体 重 0.42 ± 0.09 kg 小 兔 8 只。将 兔 置 于 带 有 放 射 性 标 记 的 供 氧 环 境 中， 连 续 记 录 小 兔 血 压 变 化 和 心 率 变 化。心 电 图 采 用 普 通 电 置 记 录 仪 记 录。血 压 使 用 水 压 计 直 接 测 定。结 果 表 明，进 行 体 外 芳 酸 转 移 激 活 可 以 有 效 地 减 少 小 兔 的 血 压 波 动。
至AP复极至80%所用时间（APD_{80}）AP幅度（AP）2。部分性缺血致心肌梗死，观察Nic，Ver，Iso对AP的影响，测定5个参数AP_{max}，APD_{max}，APD_{min}，APD_{r1}，APD_{r3}，正常心肌缺血组：观察Nic对AP的AP_{max}，APD_{max}，APD_{min}的影响，用药前恢复和在一周内随机取样进行，经放大后校验，数据处理采用配对t检验。

实验结果：Nic北京制药厂；Iso北京制药厂；Ver苏联ORI厂。

结果
Nic，Iso及Ver对窦房结细胞AP的影响
1. 标本以Nic 33 mmol/L灌流15 min后，与用药前相比，AP_{max}增加33%（P<0.001），APD_{max}缩短5%（P<0.01），APD_{min}缩短15%（P<0.001），V_{max}及APA无显著变化（图2，表1）。
2. 标本以Iso 0.15 mmol/L灌流5 min后，与用药前相比，AP_{max}增加55%（P<0.001），APD_{max}缩短29%（P<0.05），APD_{min}缩短41%（P<0.05），V_{max}增加141%（P<0.05），APA无显著变化（图2，表1）。
3. 标本以Ver 0.22 mmol/L灌流10 min后，与用药前相比，AP_{max}增加43%（P<0.001），APD_{max}缩短35%（P<0.001），APD_{min}缩短33%（P<0.05），V_{max}下降80%（P<0.05），APA下降15%（P<0.05）（图2，表1）。

Tab 1. Effects of nicotineamide, isoprenaline and verapamil on slope of phase 4, sinus cycle length, action potential duration at 90% repolarization, action potential amplitude, and V_{max} of phase 5 of action potential of SA node cells, x̄±SD, *P<0.05, **P<0.01

<table>
<thead>
<tr>
<th></th>
<th>Nic</th>
<th>Iso</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>SCL (ms)</td>
<td>54±17</td>
<td>46±12</td>
<td>48±11</td>
</tr>
<tr>
<td>APD_{max} (ms)</td>
<td>173±9</td>
<td>63±8</td>
<td>62±3</td>
</tr>
<tr>
<td>APA (V)</td>
<td>8±5</td>
<td>8±8</td>
<td>8±3</td>
</tr>
<tr>
<td>V_{max} (V/ms)</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

图2. Effect of nicotineamide, isoprenaline and verapamil on action potential of SA node cells, a) control, b) after drugs.

Nic，Iso，Ver对部分性缺血致心肌梗死的影响
1. 标本以Nic 33 mmol/L灌流30 min后，与用药前相比，AP_{max}下降21%（P<0.01），APD_{max}延长3%（P<0.05），APD_{min}延长4%（P<0.05），V_{max}及APA无显著变化（图3，表2）。
2. 标本以Iso 0.15 mmol/L灌流15 min后，与用药前相比，AP_{max}增加82%（P<0.01），APD_{max}延长16%（P<0.01），APD_{min}延长15%（P<0.05），APA增加11%（P<0.01），V_{max}无显著变化（图3，表2）。
3. 标本以Ver 0.22 mmol/L灌流30 min后，与用药前相比，AP_{max}下降23%（P<0.01），APD_{max}缩短7%（P<0.01），APD_{min}缩短6%（P<0.01），APA无显著变化（图3，表2）。

图3. Effects of nicotineamide, isoprenaline and verapamil on action potential of SA node cells, a) control, b) after drugs.
Table 2: Effects of nicotinamide, isoprenaline and verapamil in \(V_{max} \) of fast phase and slow phase

<table>
<thead>
<tr>
<th>(n)</th>
<th>(V_{max}) (V/m)</th>
<th>(V_{max}) (V/m)</th>
<th>APDmax (ms)</th>
<th>APDmax (ms)</th>
<th>APA (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nic</td>
<td>control</td>
<td>70 ± 22</td>
<td>19 ± 6</td>
<td>158 ± 17</td>
<td>172 ± 14</td>
</tr>
<tr>
<td></td>
<td>30 min</td>
<td>55 ± 18**</td>
<td>19 ± 5</td>
<td>165 ± 12**</td>
<td>179 ± 11</td>
</tr>
<tr>
<td>Isop</td>
<td>control</td>
<td>54 ± 11</td>
<td>22 ± 4</td>
<td>160 ± 14</td>
<td>170 ± 10</td>
</tr>
<tr>
<td></td>
<td>15 min</td>
<td>61 ± 11*</td>
<td>40 ± 7***</td>
<td>180 ± 25**</td>
<td>180 ± 25</td>
</tr>
<tr>
<td>Verap</td>
<td>control</td>
<td>72 ± 13</td>
<td>22 ± 6</td>
<td>163 ± 18</td>
<td>176 ± 18</td>
</tr>
<tr>
<td></td>
<td>30 min</td>
<td>74 ± 14*</td>
<td>37 ± 4**</td>
<td>152 ± 16***</td>
<td>164 ± 19</td>
</tr>
</tbody>
</table>

Fig 5: Effects of nicotinamide, verapamil and isoprenaline on action potentials of guinea pig ventricular papillary muscle. Each point is the mean of 3 experiments.

Fig 4: Effects of nicotinamide on action potentials of normal guinea pig papillary muscle cell. a) control, b) 15 min after nicotinamide.

Nicotinamide 11% (p<0.01), APDmax 10% (p<0.01), APA

Discussion

Electric field stimulation reveals, in isolated guinea pig (L) atrial myocardium, that the action potential of a single atrial cell is determined by the height of the atrial muscle. In our experiments, the atrial muscle is stimulated with a stepwise increase in stimulus intensity (SP). At a stimulus intensity of 100%, the APDmax and the effect on the action potential of the atrial muscle are maintained. The application of nicotinamide (Nic) decreases the APDmax by 10% (p<0.01), APA by 10% (p<0.01). The effects on the APDmax and APA of the atrial muscle are not significant different.

In the presence of 3 x 10^-6 M nicotinamide (Nic), the APDmax is decreased by 10% (p<0.01), APA by 10% (p<0.01) compared to the control. The effects of nicotinamide on the APDmax and APA of the atrial muscle are not significant different.

The effects of nicotinamide on the APDmax and APA of the atrial muscle are not significant different.

In the presence of 3 x 10^-6 M nicotinamide (Nic), the APDmax is decreased by 10% (p<0.01), APA by 10% (p<0.01) compared to the control. The effects of nicotinamide on the APDmax and APA of the atrial muscle are not significant different.
Acta Pharmacologica Sinica 1986 Sep 1 (5) : 429-433

Effects of nicotineamide on action potentials of sinusoidal node cell and depolarized papillary muscle cell of guinea pig

WANG Dai-yuan. WANG Hong-zhan. ZHOU Cheng-ming. ZHANG Ke-jin
(Dept Pharmacology, Xijing Medical College, Xi'an 710031)

ABSTRACT The effects of nicotineamide (Nic) on action potentials (AP) of guinea pig SA node cell, normal papillary muscle cell and papillary muscle cell depolarized by high K+ were studied. Nic 33 mmol/L increased the slope of phase 4 of AP of SA node cell by 43 %; APD90 of normal papillary muscle cell was shortened by 10 %; Vmax of phase 0 of AP of depolarized papillary muscle cell was not much changed. Vmax of phase 0 of AP of depolarized papillary muscle cell was decreased by 21 %.
excitability of the depolarized papillary muscle was inhibited. Verapamil 0.22 μmol/L decreased the slope of phase 4 and V_{m} of AP of SA node cell respectively by 44% and 88%. V_{m} of AP of the depolarized papillary muscle cell was decreased by 25%; V_{m} was not significantly changed.

The results suggest: 1) There may be a difference between I_{Na} in the phase 4 of SA node AP and I_{Na} in the phase 0 of SA node AP and V_{m}, of AP of the partially depolarized papillary muscle cell. 2) The inhibition of Nc on excitability of myocardium may be related to the effect on Na+ channel.

KEY WORDS: nicotinamide, isoproterenol, verapamil, sinoatrial node, papillary muscles, action potentials