Effects of ginsenosides on sympathetic neurotransmitter release in pithed rats

ZHANG Feng-Luan, CHEN Xiu
(Dept Pharmacology, Human Medical College, Changsha 410003)

ABSTRACT In order to elucidate the mechanism of biphasic action of ginsenosides (G) on blood pressure, the effects of G on the sympathetic neurotransmitter release was examined in pithed rats. G 30 mg/kg iv did not affect the pressor response of exogenous NE. However, G significantly attenuated the pressor action of NE released by electric stimulation on spinal T11. Since yohimbine is a selective prejunctional α2-receptor blocker, it inhibits the presynaptic negative feedback on NE release. It was demonstrated that yohimbine 0.05 mg/kg iv augmented the pressor response of spinal electric stimulation, and G blunted significantly the augmentation. It is proposed that G serves as a presynaptic α2-receptor agonist, and its hypotensive effect is attributed to the reduction of transmitter release of sympathetic nerves. Its hypertensive effect is explained as a result of less selective action on presynaptic α2- and possibly α1-receptors in vascular muscles.

KEY WORDS blood pressure; electric stimulation; ginsenosides; norepinephrine; pithed rats; spinal cord; yohimbine

Ginsenosides (G) produced a biphasic action on blood pressure in dogs and rats(1). This was explained by different responses of contraction and relaxation in different blood vessels(2). However, drug effects on blood pressure can also be mediated by affecting neurotransmitter release. The purpose of the present study is to elucidate the mechanism of the biphasic action of G based on the possibility of action on presynaptic regulation of adrenergic neurotransmitter release in pithed rats.

MATERIALS AND METHODS

Experimental procedure Male rats[214 ± SD 22 g], under ether anesthesia and artificial respiration, were pithed via the orbit with a metal rod with a partially noninsulated tip as an active electrode coupled with an indifferent electrode inserted subcutaneously to one leg, to deliver sympathetic stimulation on spinal T11, and to elicit selective pressor response(3). The parameters of electric stimulations were: 60 V, wave width 0.4 ms, frequency 1.2-2.4-4.0-6.0 and 15-2 Hz, produced by square wave stimulator (Type VSD-4, Hanghua Electronic Inc)

Experimental design In the 1st experiment effect of G on the pressor response of exogenous NE was observed. 14 pithed rats were equally and randomly allocated into 2 groups. Effects of G 30 mg/kg iv on the pressor responses of iv NE (0.5-1.2-4.5 μg/kg) were observed, and compared with normal saline (control group) on the pressor response of NE.

In the 2nd experiment, effects of iv G 30 mg/kg (n=7) on the pressor response induced by electric stimulation for 15 s on the spinal sympathetic nerves were compared with saline control group (n=6). The 3rd experiment was designed to examine G effect on the yohimbine-induced pressor response via negative feedback blockade. The difference of pressor responses (ABP) elicited by electric spinal stimulation before and after yohimbine 0.05 μg/kg iv

Received 1985 Oct 25 Revised 1986 Nov 1

1 Project supported by the Science Fund of the Chinese Academy of Sciences, No 337
was compared between G 30 mg/kg and normal saline iv (5 rats/group) 10 min before yohimbine.

Group comparisons by t test were calculated to estimate the differences between action of G and normal saline.

Chemicals Gelsemonoside were extracted from Panax ginseng C A Meyer, Yohimbine and norepinephrine were purchased from Sigma.

RESULTS

Effect of G on the pressor responses of NE. As shown in Fig 1, the pressor actions of NE in different doses were dose-dependent and there was no significant difference between G and saline. This suggests that the pressor responses of exogenous NE are not affected by G.

Effect of G on the pressor responses to spinal sympathetic stimulation. As shown in Fig 2, the pressor responses (ABP) by all different frequencies of electric stimulation were not significantly affected by normal saline (p > 0.05). While G attenuated significantly the pressor responses of spinal sympathetic stimulation (p < 0.05 or p < 0.01 in most frequencies of stimulation), and the ABP became more negative at the frequencies of stimulation increased. These findings suggest that the pressor responses to sympathetic transmitter release induced by spinal electric stimulation are significantly inhibited by G.

Effect of G on yohimbine induced pressor response. As shown in Fig 3, yohimbine 0.5 mg/kg enhanced the pressor responses (ABP) of electric stimulation at 2.4, 4, 8, and 9.6 Hz to 0.4 ± 0.6, 0.3 ± 1.0 and 0.5 ± 1.0 kPa, respectively, via blocking the negative feedback initiated by presynaptic α₂-receptors. Pretreatment by G reversed the pressor potentiation action on yohimbine.

![Diagram](https://example.com/diagram.png)

Figure 1. Effect of gelsemonoside on pressor response of iv norepinephrine. n = 7, X ± SD, *p > 0.05.

Figure 2. Effect of gelsemonoside on pressor response induced by spinal electrical stimulation in phined rats, X ± SD, *p > 0.05, **p < 0.05, ***p < 0.01.

Figure 3. Effect of gelsemonoside on pressor response of sympathetic stimulation enhanced by yohimbine, n = 5, X ± SD, *p > 0.05, **p < 0.05, ***p < 0.01.
\[\Delta BP \approx -1.8 \pm 0.4 (p < 0.05) \text{ and } -1.7 \pm 0.3 (p < 0.01) \text{ kPa by 4.8 and 9.6 Hz,} \]

respectively. These data indicate that G can antagonize the blocking action of yohimbine on postsynaptic negative feedback regulation of blood pressure.

DISCUSSION

The present experiment showed that pressor responses to exogenous NE were not affected by G in pithed rats. However, pressor responses to sympathetic stimulation were reduced significantly by G. This indicates that G neither antagonizes directly the effect of NE, nor blocks post-junctional \(a_2 \)-receptors. It has been well documented that yohimbine\(^{15}\), as \(a_2 \)-receptor blocker, blocks selectively prejunctional \(a_2 \)-receptors and inhibits negative feedback loop and thus expresses as increasing the pressor responses induced by electronic stimulation.

In our experimental condition, iv yohimbine 0.05 mg/kg augmented the pressor responses of spinal electronic stimulation at 4.8 and 9.6 Hz, whereas G blunted significantly the augmentation. It is concluded that G may serve as a presynaptic \(a_2 \)-receptor agonist and its hypotensive effect may be attributed to the reduction of transmitter release of sympathetic nerves. The transient hypotensive component of biphasic effect of G is explained as a result of less selective action on postsynaptic \(a_2 \)-receptors in vascular muscles. The \(a_2 \)-receptors in the vascular muscles can be reactivated by catecholamine in the circulation and can produce pressor response\(^{16}\). It is speculated that G may also stimulate the postsynaptic \(a_2 \)-receptor and produce hypotensive action.

Our experiment may bring some clues to clarify the experience of traditional Chinese medicine considering *Panax ginseng* possesses modulating action on blood pressure, increases blood pressure in hypertensive state and lowers blood pressure in hypotension.

The present experiment proposes a new idea that G may stimulate postsynaptic \(a_2 \)-receptor supported by its antagonistic action on the pressor effect of yohimbine.

ACKNOWLEDGMENT Mr. LIU Zhaoqian (刘昭前) performed technical assistance.

REFERENCES

人参皂甙对破坏背囊大鼠交感神经递质释放的作用

张文著，陈修（湖南省药理研究所，长沙 410008）

[摘 要] 破坏背囊大鼠实验显示，人参皂甙 30 mg/kg，可抑制交感神经递质的释放，可能通过破坏交感神经节突触后膜，减少递质的释放。

关键词：人参；电刺激；背囊大鼠；脊髓；递质