图 1. Russulagina (1 R, 2 S)-5-acetoxy-7-
{(2E)-2-methylpent-2-enyl}oxipiperazine

方法与结果

Russulagina 的抗血小板作用

图 2.2的水提取物

1985年7月25日

金松

1985年8月24日
Fig. 2. Contraction of aortic strips of rabbit caused by tussilago and nonpareilepinine.

Tussilago 37-38°C, dose 0.5% C02 \+ 50% CO2, with pectoral muscle at rest and with 10 min stimulation at 1 Hz, 1000 times, 1-2 h. Every 15 min stimulation 1 time, and 10 stimulations each 1 h. The Tussilago dose is 0.06 mg/ml, 0.01 mg/ml, and 0.001 mg/ml. The Neve dose is 0.24 mg/ml. The results show that the contractility of the aortic strips is significantly increased when stimulated with Tussilago and nonpareilepinine. The contractility is significantly decreased when stimulated with Neve.

Table 1. Influence of phenolamine, Ca"+"-free solution and verapamil on contractile effects of tussilago and nonpareilepinine on aortic strips of rabbits.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tussilago Tension (g)</th>
<th>Tussilago 0.01 mg/kg Difference</th>
<th>Neve Tension (g)</th>
<th>Neve 0.01 mg/kg Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.17 ± 0.44</td>
<td>-</td>
<td>1.72 ± 0.10</td>
<td>-</td>
</tr>
<tr>
<td>Phenolamine 1/2* pereudeminted</td>
<td>0.27 ± 0.24*</td>
<td>-0.10 ± 0.28*</td>
<td>0.50 ± 0.15</td>
<td>0.47 ± 0.10**</td>
</tr>
<tr>
<td>Ca"+"-free solution</td>
<td>0.27 ± 0.24*</td>
<td>-0.10 ± 0.28*</td>
<td>0.50 ± 0.15</td>
<td>0.47 ± 0.10**</td>
</tr>
<tr>
<td>Control</td>
<td>0.02 ± 0.21</td>
<td>-</td>
<td>1.72 ± 0.10</td>
<td>-</td>
</tr>
<tr>
<td>Verapamil 1/16* pereudeminted</td>
<td>0.55 ± 0.18*</td>
<td>-0.32 ± 0.42*</td>
<td>0.47 ± 0.10</td>
<td>-1.23 ± 0.10**</td>
</tr>
</tbody>
</table>

*Significant difference from control, p < 0.05.
**Significant difference from control, p < 0.01.
收缩的综合结果，

值得指出者在无Ca⁺⁺溶液中的变化明显不同。NE收缩所需Ca⁺⁺的来源主要是细胞内，因此在无Ca⁺⁺溶液中可能未完全减
弱，此与文献报道相近。而Tus在无Ca⁺⁺溶液中的收缩作用更显著减弱，表明细胞外Ca⁺⁺的存在。静脉肌细胞膜上至少有两种类
似Ca⁺⁺通道可供细胞外Ca⁺⁺内流(Na⁺),

目前比较清楚的是电压依赖性Ca⁺⁺通道(1)，与受体结合Ca⁺⁺通道(ROCC)，Ca⁺⁺的封闭对Ver依赖性抑制PDC(2)，对细胞内贮
库释放Ca⁺⁺的抑制作用(Ca⁺⁺)，实验表明NE作
用被Ver一定程度地抑制，且文献报道相近，而Tus的作用并未因Ver而显著变化，表
明Tus不是通过PDC促进Ca⁺⁺内流，Ca⁺⁺激
动剂的作用方式复杂，Tus对血管平滑肌直
接作用的进一步机械有待研究。

参考文献

1 正常，该文献的真理研究(三)，西学华服
1993 34：209
2 Ying BF, Yang PM, Zhu RH: The structure of
tussilagin, an active component from
Tussilago farfara L. International Symposium
on Organic Chemistry of Medicinal Natural
Products (IPAC), Shanghai 1985
3 Frigl EO. Sympathtic control of coronary
circulation, Circ Res 1985; 20 : 262
4 Berne C, Fattibb, Castner R, Torpeo P,
Wuytack P, Dedi R. Factor controlling cyto-
plasmic Ca⁺⁺ concentration. Philo Trans R
Soc Lond B 1975; 275 : 57
5 Hudgin PM, Weisa GB. Differential effects
of Ca removal upon vascular smooth muscle
contraction induced by NE, histamine and potassium J Pharmacol Exp Ther 1968;
159 : 91
6 Bolton TB. Mechanisms of action of trans-
mittents and other substances on smooth muscle. Physiol Rev 1976; 59: 606
7 Triggle DJ, Swany VC. Pharmacology of
agents that block calcium. Chem Rev 1986;
82 (1 suppl) : 174
8 Naylor WG and Yoolin-Wilson P. Calcium
antagonists: definition, and mode of action.
Basic Res Cardiol 1941; 72: 1-71
9 Bandi AY. Effects of verapamil on excita-
tion-contraction coupling in frog atrio-
urcos J Pharmacol Exp Ther 1975: 205: 49
10 Haushar G. Differential effect of verapamil
on excitation-contraction coupling in smooth
muscle and on excitation-secretion coupling
in atradrenine nerve terminals. J Pharmacol
Exp Ther 1972: 185 : 672

Acta Pharmacologica Sinica 1986 Jul 7 (4) : 323-336

Pressor mechanism of tussilagone
LI Yi-ping, WANG Yun-mo
(Shanghai College of Traditional Chinese Medicine, Shanghai 200002)

ABSTRACT Tussilagone (14 R, 7 R)-
14-acetoxy-7-{[2(2-E)-3'-methylpent-2'-enoioxyl] oloplupane, first isolated by
Chinese from Tussilago farfara L. had a
prominent pressor effect on spinal cats and a slight depressor effect on anesthetized cats
injected via vertebral artery. The pressor
effect was not influenced by hexametha-
nium bromide, but reduced by phenol-
amine or pronololination ofenterine. Tussi-
lagone induced the contraction of aortic
strips of rabbits. The contractile pattern
was not influenced by phentolamine or
verapamil, but reduced in Ca⁺⁺-free
solution. This was different from that of norepinephrine.

These results indicate that the vasoconstricting effect of tussilagone is peripheral, and is a combined result of increasing the release of catecholamine transmitter from nervo terminals and a direct action on vascular smooth muscle. The direct action depends on the extracellular Ca**.

KEY WORDS tussilagone (14R, 7R)-14-acetoxy-7-((2'E)-3'-methylpent-2' -enoyloxy)-opioanone; aorta; blood pressure; renephrine; norepinephrine; Ca**