Pharmacokinetics of vasicine in healthy Indian volunteers

V Anjia, G Bano, R K Jethri, U Zutshi, C K Atal

(Dept Pharmacy & Therapeutics, Government Medical College, Jammu 180001, India; Regional Research Laboratory, Jammu 180001, India)

ABSTRACT The pharmacokinetic study of vasicine was conducted on 6 human volunteers after a bolus iv dose of 1.5 mg/kg. The peak plasma concentration of 62±3 μmol/L was obtained at 15 min, and by 4 h only one third of the peak concentration was detected in plasma. These findings correlate well with the clinical studies conducted earlier with vasicine on patients of bronchial asthma.

KEY WORDS vasicine (1,2,3,4-tetrahydro-1-pyrrolo[2,3-b]-quinazoline-3-ol); bronchodilator agent; human experimentation; intravenous injections; pharmacokinetics

Vasicine is one of the major alkaloids of Adhatoda vasica Nees. Chemically it is 1,2,3,4-tetrahydro-1-pyrrolo[2,3-b]-quinazoline-3-ol. Intravenous injections of 2.5-10 mg/kg to dogs and rabbits caused respiratory stimulation bronchodilator effect. comparable with that of theophylline[1]. Pharmacokinetic studies on mice and rats showed that vasicine followed a biphasic kinetic pattern. In the present investigation kinetic study was made on human volunteers.

METHODS

This study was conducted on six healthy Indian volunteers (4 M and 2 F), aged 19-35 yr (24±SD 3 yr) and weighing 55-71 kg (61±3 kg). Inform consent was obtained from all the subjects before the study. There was no evidence of illness suggested by history, clinical and laboratory examinations. All subjects were non-smokers and instructed to refrain from any medication for at least 7 d prior to the study.

They received a bolus iv dose of vasicine 1.5 mg/kg. Venous blood samples were collected before and at 0, 0.5, 1, 2, 4, 8, 16 and 24 h after medication in heparinized tubes. Samples were centrifuged to obtain plasma and stored at -20°C until analysis by spectrophotometric method[12].

Vasicine concentrations in plasma were plotted on a semilog paper. The curves were biexponential and kineties was described by two-compartment open model system[11]. The linear regression calculation of the terminal 4 points was done by the method of least squares[10]. From the slope of B line and the intercept of the line with y-axis, B was calculated. Using stripping technique a phase and A were computed[12].

The values of the individual rate constans K1, K2, and K3 were followed as by Notari[10]. Apparent volume of distribution (Vd), volume of central compartment (Vc) and plasma clearance (Cl) were calculated according to Niizi[12]. Area under plasma concentration versus time (AUC) was calculated as described by Niizi et al[12].

RESULTS

After a single iv dose of vasicine in
normal persons the peak plasma concentration obtained at 15 min was 65 ± 5 μmol/L. The decline was steep during the first hour, thereafter the decline was relatively slow. At the end of 2 h, plasma concentration was 5.3 ± 1.3 μmol/L (Fig 1).

![Fig 1](image)

Feathered semilog plot showing time course of plasma vascinone concentration in 6 normal volunteers after iv bolus.

The pharmacokinetic parameters revealed that the fast disposition rate constant was 0.76 ± 0.18 h⁻¹ which corresponded to distribution t½ of 0.91 ± 0.24 h. The slow disposition constant (B) was 0.068 ± 0.003 h⁻¹ with elimination t½ of 10.1 ± 0.7 h.

The individual rate constants KI and KII were 0.15 ± 0.03 h⁻¹ and 0.59 ± 0.04 h⁻¹, respectively. The apparent volume of distribution (Vd) was 14.3 ± 1.1 L. The volumes of central (Vc) and tissue (Vt) compartments were 4.6 ± 0.3 and 0.7 ± 0.6 L, respectively.

The AUC was 508 ± 26 μmol/L per hour and the CI was 0.77 ± 0.09 L/h.

DISCUSSION

Since the plasma level curve was found to be biexponential, pharmacokinetic evaluation was based on a two-compartment open system model. A detailed calculation of the data supported the selection of two-compartment model. The criteria proposed by Naus et al. were fulfilled in the present study.

Although vascinone was being distributed to the tissues, its return to the central compartment was faster (as the rate constant KI was 3.53 times greater than KII), indicating that more vascinone was available for elimination from the central compartment.

In the clinical studies conducted earlier with vascinone on patients of bronchial asthma on iv medication the effect started within 10-15 min and lasted 4-5 h. Our findings correlate well with them. The peak plasma concentration reached at 15 min. By 4 h only 1/5 of the peak concentration was present in the plasma, which may be the minimal effective concentration for bronchodilator effect.

REFERENCES


2 Zutshi U, Rao PG. Pharmacokinetic studies. Ibid 93-103


鸭嘴花碱在健康志愿者身上的药物动力学

V Amlas, G Dano, R K Jaffari, U Zandni, C K Atal

Dept Pharmacology & Therapeutics, Government Medical College, Jammu 380001, India; Regional Research Laboratory, Jammu 380001, India)

摘要 用分光光度测定法在6名健康志愿者身上

测定了29氢的吸收情况。鸭嘴花碱（Vasocine）

的血药浓度及药物动力学参数。人IV vasocine 1.5 mg/9e 2次。

min血药浓度峰值6.5±μmol/L, 4 h 后为 升 值 的

1/3, 24 h 为 6.5±1.3 μmol/L。此结果与早期临床试

管治疗冠脉造影术结果一致。

其血药-时间关系呈一次指数函数关系，按 二 室 开

放大模型计算动力学参数为，K12 = 0.15±0.12 h-1, t1/2 =

0.91±0.24 h, Ka = 0.068±0.002 h-1, tmax =

0.7 h, K1t = 0.18±0.05 h-1, K2t = 0.09±0.04 h-1, Vd

= 14.8±1.1 L, Vc = 4.6±0.3 L, Vd = 0.7±0.6 L, AUC = 158.25 μmol/(L•h), and Cl = 0.77±0.09

L/h.

关键词 鸭嘴花碱, 2,3,4-三氢酸胺-(2,1-b)-

氧化物-2,4-异, 冠状动脉扩张药, 临床试验, 静脉注射

药物动力学