MODIFICATION OF EFFECTS OF REPEETITIVE RESTRAINT STRESS ON BRAIN BIogenic AMINES BY L-TYROSINE'

Carlos M Quinne, Mauricio Odlo, Roger F Maickel
(Dept Pharmacology & Toxicology, School of Pharmacy & Pharmaceutical Sciences, Purdue University, West Lafayette IN 47907, USA)

ABSTRACT Repetitive immobilization of rats for 28 sessions of 4 h each on an unpredictable schedule over 91 calendar days increased brain levels of DA, NE and 5HT. A similar effect, though less in magnitude, was seen by ig L-tyrosine 0.5 mg/kg on the same schedule. Combining the stress and L-tyrosine produced brain amine levels that were similar to those of L-tyrosine alone.

KEY WORDS physical restraint; L-tyrosine; brain dopamine; norepinephrine; serotonin

Exposure of rats to acute stress causes an increase of brain noradrenergic activity(1). Chronic stress increases both metabolism and release of brain noradrenaline (NE), even beyond the ability of neurons to synthesize NE, resulting in a depletion of brain stores of NE(2). Elevated dopamine (DA) levels in hypothalamic nuclei after stress(3) and increased utilization of DA in rat brain stem after 15 min of foot shock(4) have been reported. Acute applications of restraint stress to rats decreased the serotonin (5 HT) content of the hypothalamus(5) and increased the turnover rate of 5HT in cerebral cortex(6). Prolonged or repeated exposure to stressful stimuli evoked an activation of brain 5HT neurons(7).

The present paper describes the effects of repeated sessions of restraint stress, applied on an irregular/unpredictable schedule with small doses of L-tyrosine on the levels of DA, NE, and 5HT in rat brain.

METHODS

Adult 25 Sprague-Dawley derived rats weighing 230±5 g were housed 3-4/cage with free access to Purina Laboratory Chow and tap water. Group A was not subject to any restraint stress, but each rat was handled and weighed daily. and, on those days on which stress was applied to groups B and D, each rat in group A received intrastratically (ig) distilled water 1 ml/kg at 8 AM. Group B was treated in the same manner as group A except that these rats were subjected to 3 h of restraint stress (1-5 PM) according to a randomized/irregular schedule(8). Group C was treated similarly to group A except that these rats received ig L-tyrosine (0.5 mg/kg) in water. Group D received both the L-tyrosine and the stressful stimulus.

Restraint stress consisted of a total of 28 sessions, of 4 h each, randomly distributed within 84 d(9). Rats were physically restrained in individual metal boxes with fixed walls and floor and an adjustable lid permitting pressure-controlled restraint. This immobilization produced no physical damage but was a severe psychological stress to the rats.

Following the last day of dosage and/or restraint, all rats remained 3 d undisturbed in
their home cages, then were decapitated between 1 and 3 PM on the 2nd day. The brains were rapidly transected at the fornix interior just forward of the superior peduncles, washed in cold 0.9% saline, blotted dry, and stored at 60°C until assay. DA, NE, and 5-HT were determined in whole brain\(^{(11)}\). L-tyrosine was determined fluorimetrically\(^{(10)}\). Statistical comparisons were made by ANOVA with Dunnett’s post hoc test.

RESULTS

As shown in Table 1, the repetitive stress by itself evoked significant elevations in brain levels of all 3 biogenic amines (A vs B). A significant elevation in levels of all 3 amines was also noted in the rats given the treatment regimen of L-tyrosine though not exposed to the stressful stimuli (A vs C). The rats given L-tyrosine and exposed to restraint stress had levels of DA and NE, but not of 5-HT, that were less than those obtained with restraint stress alone (B vs D). These rats had brain biogenic amine levels that did not differ significantly from those given L-tyrosine but not exposed to the restraint stress (C vs D). In this regard, it should be noted that brain levels of L-tyrosine were not significantly different from control levels at either 5 h or 48 after L-tyrosine 0.5 mg/kg.

DISCUSSION

The fact that a regimen of small doses of L-tyrosine influenced brain levels of DA and NE when given over an 8-4 d period should not be surprising in view of a recent review\(^{(12)}\). Such a dosage regimen would not be expected to result in feedback changes in an enzyme such as tyrosine hydroxylase since it was not a loading type of dose. The effects of the dosage regimen on brain 5-HT levels may reflect a catecholamine-indolamine interaction. An additional complexity may lie in the non-specificity of conversion of amino acid precursors to amines. For example, L-tyrosine can be converted to DA and NE only in neurons that contain tyrosine hydroxylase.

Nevertheless, the alterations of restraint stress-induced elevations of all 3 brain biogenic amines by L-tyrosine suggests that dietary factors may be capable of acting as modulating factors in the organism. The small dosages used, given at a time of day when the rats would have ceased eating 2-3 h previously, lend support to the possibility that massive, loading-type doses are not required to alter brain biogenic amine levels\(^{(11)}\). These effects of L-tyrosine plus stress may be similar to the interactions of L-tryptophan and stress previously reported\(^{(10)}\).

REFERENCES

L-酪氨酸改变反复束缚应激对脑内生物胺的作用

Carlos M Quijete, Mauricio Odio, Roger Y Maikel

Depart Pharmacy & Toxicology, School of Pharmacy & Pharmacal Sciences, Purdue University, West Lafayette IN 47907, USA

摘要：大鼠在84 4内慢性给予24次反复束缚应激,脑内DA,NE和5-HT水平,阿朴吗啡下肢L-酪氨酸6.5 mg/kg也产生上述应激反应,但增加L-酪氨酸的叠加应激内生物胺水平作用。

关键词：L-酪氨酸，纹状体，多巴胺，去甲肾上腺素