氟化碳热电子的液体电子显微检测

氟化碳热电子的液体电子显微检测的振动诱发电镜

材料和方法

对1号和2号氟化碳热电子检测示例具有电子显微

实验结果

1. 形态观察

2. 电镜观察

1984年1月7日糙 1984年8月7日修正
图1. Electron micrographs of emulsions I (A) & II (B) sampling on the day the emulsification was prepared. Negative staining, A) Gradual distribution according to particle size. The size of macro-
particle (arrow) is darker than the adjacent, B) Obvious dispersion of particles distribution.

尽管染色剂位置可以检测，I号和II号油墨与其它饱和者表面
显示Purinonic F068溶液。细胞内染色液
非亲和的嗜酸性染色物。I号和II号氨墨与
据结果的O/W型细小油滴。

2. 1号和II号氨墨与

1号油墨与I号油墨相似，较大型染色液
在0.1 um以下的染色液含量较少，平均染色液有

整体表示病变的明显性，其染色液颗粒

图2. Droplet-size distribution curves for

由于染色剂的染色液为Fc-48了

0.098 um。在10次试验最小径

Fluosol-DA溶液乳剂平均直径是0.1 um

Fig. 2. Droplet-size distribution curves for emulsions I (A) & II (B) (0.249 ± 0.1) μm. The numbers of droplets were 1187 ± 1722, respectively.
ELECTRON MICROSCOPIC DETECTIONS ON EMULSIONS OF PERFLUOROCARBON BLOOD SUBSTITUTE

DAI Zhi-qiang (Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031)

ABSTRACT An improved method of electron microscopy of negative staining is presented for determining the emulsion droplets of perfluorocarbon artificial blood. The resolving power is 0.01 µm. This method is simpler and more reliable than those reported in literatures.

1. Both emulsions I and II consisted of ultrafine droplets of O/W type. The average diameters of droplet (>0.4 µm) were 0.08 µm and 0.09 µm, respectively. The maximum diameter for all droplet distributions were below 0.02 µm. It seems that the droplet size target of the emulsions has caught up with more advanced levels.

2. Emulsion I was more stable than II, which contained 0.2% droplets of >0.4 µm and caused little toxicity to microdroplets.

KEY WORDS perfluorocarbon artificial blood; emulsion; negative staining; electron microscopy